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A Novel Uniplanar Compact Photonic Bandgap
Power Plane With Ultra-Broadband Suppression
of Ground Bounce Noise

Xiao-Hua Wang, Bing-Zhong Wang, Ye-Hai Bi, and Wei Shao

Abstract—A novel 7-bridged photonic bandgap (PBG) power/
ground planes is proposed with ultra-broadband suppression of
the ground bounce noise (GBN) in the high-speed printed circuit
boards. The S-parameters of the proposed low-period struc-
tures show that the novel uniplanar compact photonic bandgap
(UC-PBG) structures could omni-directionally suppress the GBN
in RF/analog circuits and digital circuits. The high omnidirec-
tionally suppressions of the GBN for the proposed structure
are validated both experimentally and numerically in the noise
bandwidth from 300 MHz to 6 GHz, almost the whole noise band.

Index Terms—Electromagnetic compatibility (EMC), ground
bounce noise (GBN), photonic bandgap (PBG), power/ground
(P/G) planes, simultaneously switching noises (SSN).

1. INTRODUCTION

ITH FAST edge rates, high clock frequencies, and low
Wvoltage levels, ground bounce noise (GBN) between
the power/ground (P/G) planes is becoming one of the major
concerns for high-speed integrated circuits. The GBN can ex-
cite resonance modes between P/G planes and cause significant
signal integrity (SI) problems and electromagnetic interference
(EMI) issues [1]-[3]. In other words, this noise can produce
false switching in circuits. And with the ever-increasing clock
frequencies, the solution imposed by the GBN in high-speed
integrated circuits becomes more and more important.

Many research works have contributed to suppress the GBN.
Adding decoupling capacitors between the P/G planes is a
typical approach to suppress the GBN. But the structures
cannot suppress the GBN effectively at frequencies higher
than 600 MHz. Recently, the PBG or electromagnetic bandgap
(EBG) structures are proposed to eliminate the noise [4]-[10].
Using PBG or EBG structures to form a high impedance surface
(HIS), a wider forbidden bandgap bandwidth was achieved in
[6]-[8]. However, multilayer substrates with vias are difficult to
be implemented. So Wu et al. proposed two novel PBG power
planes to suppress the GBN in a 3~4 GHz wider bandwidth
in [9], [10], respectively. But the proposed structures still not
eliminate the GBN below 6 GHz.
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Fig. 1. Nine-cell PBG power plane. (a) Top view. (b) Parameters of a unite cell.

In this letter, a novel low-period w-bridged PBG power
planes is proposed with ultra-broadband suppression GBN
from 300 MHz to 6 GHz, almost the whole noise band de-
fined in [6], [7]. The key features of this new structure are
the m-bridges, which improve the inductance between two
neighboring pads greatly so that they can suppress the noise at
low frequencies, and the inserts, which change the flow paths of
currents so that they can suppress the noise at high frequencies.
Good results are obtained by simulation and measurement.

II. DESIGN OF THE UC-PBG STRUCTURE

In high-speed integrated circuits, P/G planes are embedded
in multilayer FR4 substrate. Therefore, in a SI view, the planes
should not only keep continuous to supply the dc voltage but
also be as a HIS to suppress the high frequency noise. Fig. 1(a)
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Fig. 2. Comparison of |S2;| between the PPW, 7- and L-bridged PBG power
plane.
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Fig. 3. Measured GBN suppression behavior for noise excitation located at
two different locations, Port 2 (74 mm, 74 mm) and Port 3 (74 mm, 45 mm),
respectively.

shows the proposed m-bridged PBG power planes with nine
cells. And the unit cell of the 7-bridged PBG and its corre-
sponding parameter notations is shown in Fig. 1(b), where w1l =
0.2 mm, w2 = 0.2 mm, g = 0.3 mm, £ = 19 mm, n = 2 mm,
p =7.5mm, [ = 28.35 mm.

Compared with the L-bridged PBG structures proposed by
Wau et al. in [10], the inductance between the two neighboring
pads of the w-bridged PBG structures is five times as large as
that of the L-bridged structures when the width of lines is the
same. It makes the proposed P/G structures could suppress the
GBN at low frequency effectively. And the inserts etched on
the power plane change the flow paths of currents. This discon-
tinuity makes the proposed structures could suppress the GBN
at high frequencies.

III. RESULTS

Fig. 2 shows the measured and simulated |S2;| for the de-
signed m-bridged PBG P/G planes and the simulated |S21| of
solid parallel plate waveguide (PPW) and L-bridged P/G planes

in [10], where the thickness of the FR4 substrate is 0.4 mm the
same as that in [10], and Port 1 and Port 2 are located at (46 mm,
45 mm) and (74 mm, 74 mm), respectively. The HFSS of An-
soft Corporation is used to simulate the structures. And excellent
agreement is obtained from dc to 6 GHz between the measure-
ments and simulations. From this figure, we can find that the
GBN is suppressed from 300 MHz to 6 GHz with a 5.7-GHz
bandwidth, almost the whole noise band defined in [6] and [7].
And the bandwidth is defined by |Ss;| lower than —30 dB.

Fig. 3 shows the measured GBN suppression behavior for
noise excitation port located at two different locations, Port 2
(74 mm, 74 mm) and Port 3 (74 mm, 45 mm), respectively. The
receiving port is all at Port 1. We can find that the GBN is still
suppressed in a wide noise band. So the proposed m-bridged
PBG structures can omnidirectionally eliminate the GBN be-
tween the P/G planes.

IV. CONCLUSION

In this letter, a novel 7-bridged PBG power plane with low-
period uniplanar compact structures is proposed to eliminate the
GBN from 300 MHz to 6 GHz almost the whole noise band.
Compared with the traditional and Wu’s structures, our power
planes have two key features, the w-bridges and the inserts,
which suppress the GBN at low and high frequencies, respec-
tively. The excellent performance of the low-period PBG power
planes is verified by measurement and simulation. So the pro-
posed structure can be widely used in high-speed integrated
circuits.
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