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Abstract— In the present paper the Finite Integration Technique 
(FIT) in combination with the Partial Element Equivalent 
Circuit (PEEC) is employed to investigate the shielding 
performance of a metallic enclosure used for digital switching 
equipment. The current distribution on the power plane of a 
complex printed circuit board is used to excite the system. The 
effect of apertures’ shape and configuration on the value of the 
radiated Electric field is studied. It is shown that dividing a 
specified area into a combination of multiple apertures may 
reduce the value of the radiated emissions and therefore improve 
the shielding effectiveness. The usage of honeycomb panels is 
finally investigated. 

I. INTRODUCTION

In order to comply with the stringent radiated emission 
limits imposed by the standards and taking into account the 
increasing clock speed and data rates of current high-speed 
digital electronics, it is often necessary to shield the enclosure 
where the Printed Circuit Board (PCB) is located. A thorough 
EMC or Signal Integrity assessment of a complete board or 
system is often a daunting task due to the extreme complexity 
of modern electronic systems. 

System designers would like to accurately evaluate the 
electromagnetic interference (EMI) produced by high-speed 
signals. This capability is useful in predicting and correcting 
interference problems at various stages in the design process. 
There are several requirements for an accurate evaluation of 
these effects. First, the complicated multilayered board and 
package structures used in today’s designs, including signal 
traces, supply planes and vias, must be modeled in a way that 
takes into account full-wave effects.  

Secondly, the behavior of various shielding structures such 
as metallic enclosures must be taken into account as well. 
Finally, the issue of problems consisting of small structures 
embedded in large computational domains must be addressed. 
Performing such analysis is often a computational challenge. 
A three dimensional (3D) solver is desirable for modeling the 
arbitrary shapes of the enclosures (which often includes slots, 
apertures [1]), but simulating a multi-layer board or package 
can be difficult and memory consuming.  

The problem results from the high complexity of modern 
boards and packages and the 3D nature of the system 
enclosures surrounding them.  

We address this problem by using the following approach: 
1) a specialized Partial Element Equivalent Circuit (PEEC) [2] 
is employed to compute the current distribution on the power 

(PWR) plane of a complex PCB, 2) a full-wave Finite 
Integration Technique (FIT) [3] is used to analyze the 
shielding performance of a metallic enclosure due to the 
calculated current distribution.  

The effect of apertures’ shape and configuration on the 
value of the radiated Electric field and the related shielding 
effectiveness (SE) are studied. It is shown that dividing a 
specified area into a combination of multiple apertures may 
reduce the value of the radiated emissions. The usage of 
honeycomb panels is also investigated. 

The structure of the paper is the following: in the next 
section the FIT technique is briefly described and validated by 
using as test vehicle a model already existent in literature [4]. 
In Section III the equivalent electromagnetic model used for 
the numerical simulation, the workflow process and the SE 
results are discussed. Finally Section IV draws some 
concluding remarks. 

II. FIT CODE VALIDATION

The numerical technique used to characterize the full 
structure (board and metallic enclosure) is the FIT, first 
proposed by T. Weiland [5].  

FIT falls in the class of differential time-domain methods 
and generates exact algebraic analogs to Maxwell’s equations 
that guarantee physical properties of computed fields and lead 
to one solution. Maxwell’s equations, and the related material 
equations, are transformed from the continuous domain into a 
discrete space by allocating electric voltages on the edges of a 
grid G and magnetic voltages on the edges of a dual grid G .
The allocation of the voltage and flux components on the grid 
can be seen in Fig. 1.  

Fig. 1  Allocation of the electric and magnetic components in the spatial grids.
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The discrete equivalent of Maxwell’s equations, the so-called 
Maxwell’s Grid Equations, are (1)–(4) 

dCe b
dt

             (1)

d
Ch d j

dt
             (2)

Sb 0               (3) 
Sd q               (4) 

In these equations, e  and h denote the electric voltages 
between grid points and the magnetic voltages between dual 
grid points, respectively. The symbols d , b  and j  are fluxes 
over grid or dual-grid faces.  

Due to the consistent transformation, analytical properties 
of the fields are maintained, resulting in corresponding 
discrete topological operators on the staggered grid duplet.  
The topology matrices, C , C , S  and S correspond to the curl 
and the div-operators. The tilde indicates that the operator 
belongs to the dual grid. The discrete analog of the coupling 
between voltages and fluxes is represented by the material 
matrices M , 1μ

M and M .

d M e               (5)

1μ
h M b                          (6)

Aj M e j              (7) 

In all of the simulations performed in this paper, the 
conductive parts of the structures have been simulated as 
perfect electric conductive material (PEC), enforcing the 
tangential component of the electric field being zero. 
Equations (1)–(4) along with (7)–(7) are solved in the time 
domain. 

The discretization of the time derivative is formulated as an 
explicit algorithm in a way that the FIT in the time domain 
can be considered as a generalization of the Finite Difference 
Time Domain (FDTD) method. The transient waveforms 
obtained by the simulations are then converted in the 
frequency domain by a fast Fourier transform. 

To check the reliability of the FIT-based code the enclosure 
model presented in [4] has been built: it is a rectangular box of 
size (30 x 12 x 30 in centimeters) with a rectangular aperture 
of size (10 x 0.5) located at the center of the frontal wall (15, 
6, and 0).  

The enclosure is illuminated by a normal incident plane 
wave (farfield source) at 0 degree polarization and three 
probes are placed in the center position inside the enclosure in 
order to register the three components of the electric field (Ex, 
Ey, Ez) and to calculate the SE afterwards. 

Fig.2 plots the SE results of FIT, other numerical techniques 
as well as measurements. A good agreement can be observed 
over the considered frequency range.  

Fig. 2  SE versus frequency at the center of the enclosure illuminated by a 
normal incident plane wave. 

III. 3D ELECTROMAGNETIC MODEL AND SIMULATION 
STRATEGY

A view of the metallic enclosure analyzed in the present 
paper is shown in Fig. 3a: it is a 370 x 90 x 296 mm box with 
a front panel with 2 rectangular apertures of dimensions: 126 
x 14 mm and 80 x 60mm.  

On the top of the box is mounted a cover, inside it there are 
two boards (see Fig.3b) and a heat sink.  

The thickness of the metal walls (PEC) is t = 2 mm and the 
dielectric material of the board 1 has relative electric 
permittivity r = 4.0.  

(a) 

(b)

Fig. 3 Three dimensional (3D) view of the metallic enclosure. 

Heat sink 

Board 1 

Board 2 
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Board 2 is a typical 6 layers PCB with hundred of nets, vias 
and connections. The PWR plane is split in islands by means 
of gaps. Due the complexity of the board, the dynamic link 
with a PEEC based code [2] is used to evaluate the current 
distribution on the PWR plane. The calculate field is then used 
within the FIT in order to perform the 3D numerical 
simulation of the metallic enclosure. The workflow design 
process is summarized in Fig.4. 

Fig. 4 Workflow process. 

Electric field components are calculated in a specific 
location 3m distant from the frontal panel of the metallic box 
and the SE is also analyzed. In the considered frequency range 
the EM fields inside the enclosure are dominated by the first 
two waveguide modes and the orientation of the slots located 
in the frontal part of the enclosure is such that the vertical 
Electric field component can couple easily across the aperture.  

The SE can be found from the ratio of the field strengths 
without and with the enclosure: 

0
E

ESE =20log
E

               (8) 

Due to the highly resonant behavior of the box, in order to 
speed up the simulation time a very small value of loss is 
distributed throughout the solution space by artificially 
assigning a conductivity ( =0.002 S/m) to the free space cells 
of the calculation domain. In [6-7] it has been already 
demonstrated how this artifact has practically no influence of 
the far field calculated results.   

In order to study the effect of the apertures located on the 
frontal panel, three different cases are analyzed, as illustrated 
in Fig.5. The SE value for the tree considered cases is reported 
in Fig.6 

Important considerations can be addressed: 1) Case 1 
shows possible problems when increasing the frequency and 
at 2GHz the SE reaches almost a negative value, 2) Case 2 
doesn’t offer a sensible improvement of the SE, 3) Case 3 is 
the only situation where the SE can be considered acceptable 
within the considered frequency range.  

The reason of this last case is certainly related to the fact 
that for rectangular apertures varying the length to width ratio 

changes the location of the resonant frequency, therefore 
improving the SE. 

Fig. 5  Different apertures size of the frontal panel. 

Fig. 6 Comparison of electric SE for the different configurations reported in 
Fig.1  

Fig.7 (a-b) depicts the Electric field, calculated at 2GHz for 
Case 1 and Case 3 and it straightforward to note how the 
electromagnetic waves are coming out the metallic enclosure 
thought the single apertures (a), while they are somehow 
contained within the enclosure in the Case 3 (b). 

Fig. 7a Electric field at 2GHz for the case 1.  

Case1 

Case2 

Case3 

126mm 80mm 
14mm 60mm 

24mm 

10mm 

58mm 35mm 

35mm 

29mm 
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Fig. 7b Electric field at 2GHz for the case 3. 

At this point the apertures located in the frontal panel of the 
metallic enclosure are covered by means of honeycomb panels, 
according to Fig.8.  

For the left panel circular holes of 2mm diameter, 1mm 
distant each other are employed, while for the right panel 
circular holes of 4mm diameter and 2mm distant each other 
are modelled. The calculated results are reported in Fig. 9 
where the comparison with case 1 is presented.  

A sensible improvement (of more than 100dB) can be 
observed in this case, which shows the high performance of 
honeycomb panels.  

Fig. 8  3D view of the metallic enclosure with honeycomb panels. 

IV. CONCLUSIONS

The effect of different shapes and configuration of 
apertures on the SE of a metallic enclosure is studied. By 
combining a specialized board analysis tools based on PEEC 
method with a 3D full wave simulation tool (FIT), we have 
demonstrated an approach to computing the electromagnetic 
emissions of complex electronic systems, including 
multilayered packages, printed circuit boards, and complicated 
metallic enclosures.  

The proposed workflow consists on three steps: 1) 
simulation of the complex PCB, 2) surface current distribution 
used to excite the enclosure and 3) full wave simulation of the 
metallic box.  

The SE of some combinations of multiple apertures is 
investigated and it is shown that dividing a fixed area into 
some smaller apertures will lead to more efficient shielding 
than implementing only one aperture. This is helpful when 
optimizing the shape of open area used to feed trough cables 
or heat dissipation. The SE when honeycomb panels are 
employed is also analyzed. 
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