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Perturbation Analysis and Modeling 
of Curved Microstrip Bends 

Abstract -The frequency-dependent transmission properties of the 
curved microstrip bend are derived by utilizing a second-order perturba- 
tion analysis of the equivalent modified curved waveguide model and a 
mode-matching method which includes the higher order modes. The 
scattering parameters of typical curved microstrip bends in (M)MIC’s 
are computed and compared with those of the right-angle and cham- 
fered right-angle microstrip bends. The calculations for the scattering 
parameters of the curved microstrip bends exhibit good convergence 
behavior with increasing number of higher order modes considered. The 
results are consistent for large curvatures and bends with small angle. 

I. INTRODUCTION 
HE MAGNETIC wall waveguide model for a mi- T crostrip line [l] together with the mode-matching 

method proposed by Kuhn [2], [3] has been successfully 
used in the past to analyze microstrip discontinuities such 
as impedance steps, bends, and T junctions [31. 

In this paper the curved microstrip bend consisting of a 
microstrip ring segment between two microstrip lines is 
analyzed for its transmission properties. The microstrip 
lines are modeled by equivalent ideal magnetic wall wave- 
guides [ 11 for which the electromagnetic field solutions 
are known [3]. The field solutions in the microstrip ring 
segment are derived by utilizing a perturbation analysis 
[4] of a modified (magnetic wall) curved waveguide model. 
Other techniques have been formulated to evaluate the 
fields inside curved metallic waveguides. These include 
the use of an equivalent nonuniformly loaded straight 
waveguide [5] and the rectangular and annular modal 
analysis [6]. The perturbation solution for the fields in the 
equivalent curved waveguide model developed here is 
readily adaptable to the mode-matching procedure and is 
used to calculate the properties of the curved microstrip 
bend discontinuities. The frequency-dependent reflection 
and transmission coefficients of curved microstrip bends 
are determined and compared with those of the right- 
angle and chamfered right-angle microstrip bends [71-[91. 

11. THEORY 
The curved microstrip bend is shown in Fig. 1. It 

consists of a microstrip ring segment (region 111) with 
angle a and radius R which connects two microstrip lines 

Manuscript received September 18, 1989; revised May 29, 1990. This 
work was supported in part by the Raytheon/TI joint venture MIMIC 
Phase I Program. 

The authors are with the Department of Electrical and Computer 
Engineering, Oregon State University, Corvallis, OR 97331. 

IEEE Log Number 9037681. 

-7 

i 
h 

(b) 

view. 
Fig. 1. The curved microstrip bend: (a) top view; (b) cross-sectional 
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Fig. 2. The curved equivalent waveguide model for the microstrip 
bend. 

(regions I and 11) with width w on a substrate of height h 
and permittivity E .  The corresponding magnetic wall 
waveguide model for the microstrip lines, shown in Fig. 2, 
is characterized by its frequency-dependent effective width 
we and effective permittivity E ,  (e.g., [lo]). Since the 
curved microstrip bend contains no discontinuities in 
width and permittivity (i.e., has constant width w and 
permittivity E ) ,  a modified (magnetic wall) curved wave- 
guide model is used here for the microstrip ring segment 
where the effective width and the effective permittivity 
are identical to the effective quantities for the microstrip 
lines [ll]. Hence, no discontinuities by which nonexisting 
modes could be excited are introduced by the modified 
curved waveguide model. The model effective radius is 
given by 

R 1  
R ,  = - 2 2  + - , I R ~ + ( ~ ,  - w ) w , .  (1) 

001 8-9480/90/ 1000- 1449$01 .OO 0 1990 IEEE 



1450 IEEE TRANSACIIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 38, NO. 10, OCTOBER 1990 

The above effective radius ensures a positive value of the and h,  = 1 + y / R e  are given as [41, [121 

a2E, 
effective inner radius r i ,e ,  which approaches zero as the 

microstrip case with the inner waveguide radius modeling goes to zero of the (Fig. right-angle 2). As in bend, the (I+;) ,-.$(l+k)$ 

+ e( 
the T junction, and other discontinuities [8], a correction 
corresponding to the difference in electrical length of the 
waveguide model and the actual structure must be made 
for accurate analysis of the curved bend. 

The waveguide models assume that the substrate height and 

P E ,  
as 

+- 

(3b) 
We 

2 
- 0  at y = + - .  'En 

dY 
-- 

h is small compared with the wavelength; hence, the 

mode and TE,, modes with transversal components E, 
and H, exist inside the waveguides. The application of 
the mode-matching method given in [2] and [3] requires a 
complete set of transversal field solutions with orthogonal 
properties in all three regions. A complete set of solutions 
for the transversal field in regions I and 11 (i.e., in the 
straight waveguides) was derived in [31 and, for reference 
planes at z = 0 and z' = 0, is given by 

fields are constant in the x direction. Thus, only a TEM 

The solutions for E,, are expressed as 

E,  = 1 + - $n( y ) e - j P n s .  (4a) i 
These form a complete set of eigenfunctions which are 
orthogonal with respect to the weighting function (1 + 
y / Q - '  [41, i.e., 

W 

. & cos [ ( y - ; j ]  

. 
cos [ Z( y - ;)I 

. 
cos [ E( y - j ]  

with 

1 
2 

for n = 0 (TEM mode) 
for n > 0 (TE,, modes) 

and 

The orthogonality property for the functions $ J y )  then 
immediately follows from (4a): 

The total field strength E, with unknown coefficients c ,  
(2a) is given by 

W 

c , $ , ( y ) e - j P n s .  ( 6 )  
n = O  

The magnetic field is readily found in terms of E, from 
Maxwell's equations. For the transverse magnetic field 
component H, we get 

1 w  

(7) 

A perturbation solution for the ele_ctromagnetic field can 
be found by expanding E, and p,' along s in a power 
series in the effective radius of curvature Re of the curved 
waveguide as shown in [4] €or a curved waveguide with 
electric walls: 

(2c) 

Here p, is the phase constant, Z, = 1/ Y, = UP, / p ,  is 

are the normalized wave amplitudes. 
In region I11 the wave equation and boundary condi- 

tions for E,, = E,,, in the curved orthogonal coordinate 
system as characterized by U ,  = x ,  u2 = y ,  and U ,  = s = 

Recp with corresponding metric coefpcients h ,  = h ,  = 1 

the characteristic wave impedance, and a i ,  b: and U:*, b:' = ( ~ + ~ ) + , ( y ) e - ~ ~ n s  (sa) 

(8b) 

The quantities $O,n  and p, are the solutions for a straight 
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waveguide ( R e  +Q)) and are given by 

Substituting (8a) and (8b) into (3a) and comparing like 
powers of Re leads to the solution for the expansion 
functions 41,n7 &,,, . * and expansion constants 
B1,,,, B2,,,; e, as shown by Lewin er al. [4]. The degree of 
accuracy and the complexity of the expressions obviously 
depend on the number of terms used in the expansions. 
For a second-order solution the expansicn functions 41,n 
and cP2,,, as well as the phase constant p,, are given as [41 

and 

1 m  

The coefficients c," and c," can be found by applying a 
normal mode-matching procedure in the same manner as 
in [2] and [31 to the continuity of the tangential magnetic 
field expressions at the boundaries between regions I and 
I11 and regions I1 and I11 as given by 

(12a) 

( 12b) 

H,!( z = 0) = H:(s = 0) 

and 
H,!'( z'= 0) = H;( s = R e a ) .  

with 

and 

This leads to 
A form of the field solution in region I11 which is suitable 
for the mode-matching method can be constructed by C:= - 

(E:, H,b) [21, PI: 

j w o  ~ ( a :  - b f ) F K ( p , n )  
WPh superimposing the field solutions obtained by alternately 

placing a magnetic wall at s = O  (E,",H;) and s =  Rea  
P n Z n  sin ( B n ~ e a )  p = 0 

(13a) 

c," = 

(13b) 

zn = (13c) 

with 1 "  
H ; = -  c c;B,,*,, sin (Bd) 

j w O  n = O  

(11a) 
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and 

The continuity of the tangential electric field at the 
boundaries between regions I and I11 and regions I1 and 
I11 is expressed as 

E;(z  = 0) = E,"(S = 0) + E,"(S = 0) (14a) 
and 

E;'( 2' = 0) = E,"( s = R e a )  + E,"( s = R e a ) .  (14b) 
Applying the mode-matching procedure to (14a) and (14b) 
leads to 

(a!, + b;) /z 
m 

= - [ c ~ + ~ ~ c o s ( ~ ~ R , a ) ] K ( n , m )  (15a) 
m = O  

and 

(a!,' + b:') {E 
CO 

= -  [ c G ~ ~ ~ ( p ~ R , a ) + c ~ ] K ( n , m ) .  (15b) 
m = O  

The coefficients c," and c," can then be eliminated by 
inserting (13a) and (13b) into (15a) and (15b). Thus, an 
infinite set of linear equations for the wave amplitudes 
a i ,  bi and a!,', b," is obtained. In order to obtain numeri- 
cal results, this infinite set of equations is truncated to 
2 M  + 2 equations, where M is the highest-order mode to 
be considered. 

The scattering parameters S i j  for an incident TEM 
mode can be found by setting a'," = 1 for n = 0 and j = 1 
or 2, with all other ~ 2 ) ' s  set equal to 0. Then the scatter- 
ing parameters S i j  = Sji are given by 

(16) S.. = b(') 
I J  0 

where bg) can be determined with standard routines for 
solving a set of linear equations. 

111. RESULTS 
The transmission characteristics of typical curved mi- 

crostrip bends have been computed, and good conver- 
gence with increasing number of higher order modes has 
been found. A typical convergence plot is shown in Fig. 3. 
As seen in this example, a minimum of three higher order 
modes must usually be considered in order to obtain a 
negligible truncation error. In the results for the curved 
microstrip bends presented in this paper, seven higher 
order modes were taken into account to ensure a negligi- 
ble truncation error. Figs. 4-6 show the magnitudes of the 
scattering parameters of three different curved microstrip 
bends with a = 90" and R / w = 2 (Fig. 11, all normalized 
with respect to the microstrip impedance. Included in 
each figure are the scattering parameters of the corre- 

-32.5 

-33.0 
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number of higher-order modes 
Fig. 3. Magnitude of the reflection coefficient as a function of the 

number of higher order modes at f = 30 GHz for a curved microstrip 
bend with a = 90", R / w  = 2, w = 73 pm, h = 100 pm, and E ,  = 12.9. 
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Fig. 4. Magnitude of (a) the reflection coefficient and (b) the transmis- 
sion coefficient as a function of frequency for a curved microstrip 
bend with a = 90" and R/w = 2, a chamfered right-angle bend [71, 
and a right-angle bend [7]. w = 73 pm, h = 100 pm, and cr = 12.9 
( Z  = 50 0). 

sponding right-angle and chamfered right-angle bends, 
characterized by the empirical CAD expressions given in 
[7] or by the magnetic wall waveguide model given in [81 
and [9]. Fig. 4 shows the results for a nominal 50 R 
MMIC line on a 100 pm semi-insulating GaAs substrate. 
The results for the nominal 50 R and 35 fl microstrip 
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Fig. 5. Magnitude of (a) the reflection coefficient and (b) the transmis- 
sion coefficient as a function of frequency for a curved microstrip 
bend with a = 90" and R / w = 2, a chamfered right-angle bend 191, 
and a right-angle bend [8]. w = 0.6 mm, h = 0.635 mm, and E, = 9.8 
(Z = 50 Cl). 

lines on a 0.635 mm alumina substrate are shown in Figs. 
5 and 6, respectively. In all three cases an improvement in 
the transmission properties with respect to the right-angle 
and chamfered right-angle bends is apparent, particularly 
for high frequencies. 

It should be noted that the accuracy of these second- 
order perturbation solutions depends on the curvature Re 
(or R J w , )  of the curved waveguide model; higher order 
terms may need to be included, especially when the inner 
radius of the microstrip goes to zero (i.e., R /  w + 0.5). 
However, the first-order perturbation solutions for the 
microstrip ring resonator as given in 1121 are very close to 
the exact solutions computed in [ l l ]  for a wide range of 
parameters; therefore a corresponding superior accuracy 
of the second-order perturbation solutions is expected 
here including the results shown in Figs. 4-6. In addition, 
for moderate microstrip curvature, e.g. R = w and 2w, the 
results based on the waveguide model presented in this 
paper are in good agreement with experimental data for 
microstrip curved bends on thin GaAs substrates [13]. 
The reflection coefficient as a function of the radius of 
curvature and the angle for a nominal 50 R MMIC line 
on a 100 pm semi-insulating GaAs substrate is shown in 
Figs. 7 and 8. 
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Fig. 6. Magnitude of (a) the reflection coefficient and (b) the transmis- 
sion coefficient as a function of frequency for a curved microstrip 
bend with a = 90" and R / w = 2, a chamfered right-angle bend (91, 
and a right-angle bend [8]. w = 1.2 mm, h = 0.635 mm, and E ,  = 9.8 
( Z  = 35 Cl).  
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Fig. 7. Magnitude of the reflection coefficient as a function of fre- 

quency for a curved microstrip bend with R/ w = 2, w = 73 pm, 
h = 100 pm, E ,  = 12.9 ( Z  = 50 CL), and various angles a.  

IV. CONCLUSION 
A method for calculating the frequency-dependent 

scattering parameters of curved microstrip bends has been 
described and computational results have been presented. 
The results have been compared with those obtained for 
the right-angle and the chamfered right-angle bends and 
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Frequency, GHz 
Fig. 8. Magnitude of the reflection coefficient as a function of fre- 

quency for a curved microstrip bend with Q = 90”, w = 73 pm, h = 100 
pm, E, = 12.9 ( Z  = 50 a), and various radii R. 

show an improvement in the transmission properties. The 
results for the scattering parameters of the curved mi- 
crostrip bend converge very fast with increasing number 
of higher order modes considered and have been shown 
to be consistent for large curvatures and bends with small 
angle. 
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速学习掌握如何使用 HFSS 设计天线，让天线设计不再难… 

课程网址：http://www.edatop.com/peixun/hfss/122.html 

13.56MHz NFC/RFID 线圈天线设计培训课程套装 

套装包含 4 门视频培训课程，培训将 13.56MHz 线圈天线设计原理和仿

真设计实践相结合，全面系统地讲解了 13.56MHz线圈天线的工作原理、

设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体

操作，同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过

该套课程的学习，可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹

配电路的原理、设计和调试… 

详情浏览：http://www.edatop.com/peixun/antenna/116.html 
 

我们的课程优势： 

※ 成立于 2004 年，10 多年丰富的行业经验， 

※ 一直致力并专注于微波射频和天线设计工程师的培养，更了解该行业对人才的要求 

※ 经验丰富的一线资深工程师讲授，结合实际工程案例，直观、实用、易学 

联系我们： 

※ 易迪拓培训官网：http://www.edatop.com 

※ 微波 EDA 网：http://www.mweda.com 

※ 官方淘宝店：http://shop36920890.taobao.com 

 
 

专注于微波、射频、天线设计人才的培养 

官方网址：http://www.edatop.com 易迪拓培训 
淘宝网店：http://shop36920890.taobao.com 




