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Perturbation Analysis and Modeling
of Curved Microstrip Bends

ANDREAS WEISSHAAR anp VIJAI K. TRIPATHI, SENIOR MEMBER, IEEE

Abstract —The frequency-dependent transmission properties of the
curved microstrip bend are derived by utilizing a second-order perturba-
tion analysis of the equivalent modified curved waveguide model and a
mode-matching method which includes the higher order modes. The
scattering parameters of typical curved microstrip bends in (M)MIC’s
are computed and compared with those of the right-angle and cham-
fered right-angle microstrip bends. The calculations for the scattering
parameters of the curved microstrip bends exhibit good convergence
behavior with increasing number of higher order modes considered. The
results are consistent for large curvatures and bends with small angle.

1. INTRODUCTION

HE MAGNETIC wall waveguide model for a mi-

crostrip line [1] together with the mode-matching
method proposed by Kiihn [2], [3] has been successfully
used in the past to analyze microstrip discontinuities such
as impedance steps, bends, and T junctions [3].

In this paper the curved microstrip bend consisting of a
microstrip ring segment between two microstrip lines is
analyzed for its transmission properties. The microstrip
lines are modeled by equivalent ideal magnetic wall wave-
guides [1] for which the electromagnetic field solutions
are known [3]. The field solutions in the microstrip ring
segment are derived by utilizing a perturbation analysis
[4] of a modified (magnetic wall) curved waveguide model.
Other techniques have been formulated to evaluate the
fields inside curved metallic waveguides. These include
the use of an equivalent nonuniformly loaded straight
waveguide [5] and the rectangular and annular modal
analysis [6]. The perturbation solution for the fields in the
equivalent curved waveguide model developed here is
readily adaptable to the mode-matching procedure and is
used to calculate the properties of the curved microstrip
bend discontinuities. The frequency-dependent reflection
and transmission coefficients of curved microstrip bends
are determined and compared with those of the right-
angle and chamfered right-angle microstrip bends [7]-[9].

II. TuHeory

The curved microstrip bend is shown in Fig. 1. It
consists of a microstrip ring segment (region III) with
angle a and radius R which connects two microstrip lines
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Fig. 1. The curved microstrip bend: (a) top view; (b) cross-sectional
view.
I
Fig. 2. The curved equivalent waveguide model for the microstrip

bend.

(regions I and II) with width w on a substrate of height A
and permittivity e. The corresponding magnetic wall
waveguide model for the microstrip lines, shown in Fig. 2,
is characterized by its frequency-dependent effective width
w, and effective permittivity e, (e.g., [10]). Since the
curved microstrip bend contains no discontinuities in
width and permittivity (i.e., has constant width w and
permittivity €), a modified (magnetic wall) curved wave-
guide model is used here for the microstrip ring segment
where the effective width and the effective permittivity
are identical to the effective quantities for the microstrip
lines [11]. Hence, no discontinuities by which nonexisting
modes could be excited are introduced by the modified
curved waveguide model. The model effective radius is
given by

+%\/R2+(we—w)we. (1)
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The above effective radius ensures a positive value of the
effective inner radius r; ,, which approaches zero as the
microstrip inner radius goes to zero (Fig. 2). As in the
case with the waveguide modeling of the right-angle bend,
the T junction, and other discontinuities [8], a correction
corresponding to the difference in electrical length of the
waveguide model and the actual structure must be made
for accurate analysis of the curved bend.

The waveguide models assume that the substrate height
h is small compared with the wavelength; hence, the
fields are constant in the x direction. Thus, only a TEM
mode and TE,, modes with transversal components E,
and H, exist inside the waveguides. The application of
the mode-matching method given in [2] and [3] requires a
complete set of transversal field solutions with orthogonal
properties in all three regions. A complete set of solutions
for the transversal field in regions I and II (ie., in the
straight waveguides) was derived in [3] and, for reference
planes at z=0 and z'= 0, is given by
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with
5, = 1 for n=0 (TEM mode) (20)
2 for n>0(TE,, modes)
and
l’l27T2
Bl=ki-—5, K=t (20)

Here B, is the phase constant, Z,=1/Y, = wu, /B, is
the characteristic wave impedance, and a},b} and a!, b
are the normalized wave amplitudes.

In region III the wave equation and boundary condi-
tions for E, = E, , in the curved orthogonal coordinate
system as characterized by u, = x, u2l= y, and u;=s5=
R,¢ with corresponding metric coefficients h,=h,=1
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and h; =1+ y/R, are given as [4], [12]

. y \2@*E, 1 . y \9E, J°E,
+ = +— |1+ =+ =
( Re) ay? R_,,( R,) dy = ds®
v 2
+ k2 1+—) E,=0 (3a)
R,
and
25 0 e 3b
= t =+—.
P at  y=i- (3b)
The solutions for E, are expressed as
y =
En=(1+—)z[f,,(y)e‘f3"‘. (4a)
Re

These form a complete set of eigenfunctions which are
orthogonal with respect to the weighting function (1+
y/R)74] ie,

-1

W, y
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The orthogonality property for the functions #,(y) then

immediately follows from (4a):

fwe/z 'ﬁm()’)d‘n()’)(1+i)dy=0 form#n. (5)
/2 R,

e

The total field strength E, with unknown coefficients ¢,
is given by
o] y @ >
Ei- T ak,= (14 5] T e ©)
n=0 Re n=0

The magnetic field is readily found in terms of E, from
Maxwell’s equations. For the transverse magnetic field
component H, we get

H =-—

y
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A perturbation solution for the electromagnetic field can
be found by expanding E, and /53 alonig s in a power
series in the effective radius of curvature R, of the curved
waveguide as shown in [4] for a curved waveguide with
electric walls:

P ¢
E,= e*]ﬁns((bo)n + ¢“" + 2.n + ..

R. TR

e

- (1+ g:)z/f,.(y)e“f“'"s (8a)

g2 =p? 1+Bl’"+BZ"‘+... (8b)
mon R R? )

4

The quantities ¢, , and B, are the solutions for a straight
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waveguide (R, — ®) and are given by

nmw We 9 )
L (»-3) (9
n2 2
Bimki-"—r, Klmmeo’ (%)

e

Substituting (8a) and (8b) into (3a) and comparing like
powers of R, leads to the solution for the expansion
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and
Ef=(1+RL) Y c,’::[/,,cos[ﬁ,,(s—Rga)]
e/ n=0
1 i - -
H)=—— % ciB¥,sin[B,(s— R,a)]. (11b)
.’wl"'ﬂ n=0

The coefficients ¢? and c® can be found by applying a
normal mode-matching procedure in the same manner as
in [2] and [3] to the continuity of the tangential magnetic
field expressions at the boundaries between regions I and

functions ¢, ,,¢,,, -+ and expansion constants > ‘
B, ., B, .+, as shown by Lewin et al. [4]. The degree of 111 and regions II and III as given by
accuracy and the complexity of the expressions obviously Hy’( z=0)=H, ,f’(s =0) (12a)
depend on the number of terms used in the expansions.
For a second-order solution the expansion functions ¢, ,, and
and @, , as well as the phase constant §, are given as [4] H(z'=0)=H}(s=R,a). (12b)
2 2
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A form of the field solution in region III which is suitable
for the mode-matching method can be constructed by
superimposing the field solutions obtained by alternately
placing a magnetic wall at s =0 (E?, H?) and s=R.a
(EZ,H)) [2), [3]:

E;‘=(1+ L) Y cip,cos(B,s)
Rt n=0
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and
w, /2

K(p,n)=|
W/
The continuity of the tangential electric field at the
boundaries between regions I and III and regions II-and
III is expressed as

ENz=0)=E%s=0)+E’s=0)

2<f>o,,,(y)tlf,,(y)

y
1+ —|dy. (13d
Re) ly. (13d)

(14a)
and
Ej‘(z’= 0)=Ei(s=R,a)+ E,’j(s =R,a). (14b)

Applying the mode-matching procedure to (14a) and (14b)
leads to
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The coefficients ¢? and c? can then be eliminated by

inserting (13a) and (13b) into (15a) and (15b). Thus, an
infinite set of linear equations for the wave amplitudes
al,b! and al, b} is obtained. In order to obtain numeri-
cal results, this infinite set of equations is truncated to
2M +2 equations, where M is the highest-order mode to
be considered.

The scattering parameters §;; for an incident TEM
mode can be found by setting a{’=1for n=0and j=1
or 2, with all other a{/’s set equal to 0. Then the scatter-
ing parameters S;; = §;; are given by

Sij= by (16)
where b’ can be determined with standard routines for
solving a set of linear equations.

III. RESuULTS

The transmission characteristics of typical curved mi-
crostrip bends have been computed, and good conver-
gence with increasing number of higher order modes has
been found. A typical convergence plot is shown in Fig. 3.
As seen in this example, a minimum of three higher order
modes must usually be considered in order to obtain a
negligible truncation error. In the results for the curved
microstrip bends presented in this paper, seven higher
order modes were taken into account to ensure a negligi-
ble truncation error. Figs. 4—6 show the magnitudes of the
scattering parameters of three different curved microstrip
bends with a =90° and R /w =2 (Fig. 1), all normalized
with respect to the microstrip impedance. Included in
each figure are the scattering parameters of the corre-

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 38, No. 10, ocToBER 1990

-30.0
—30.5'5\
-31.0 - \
—31.5: \

\ & -9--8--0-8--8--0--8--§

-32049 ®

ISy, dB

—-32.5

-33.0 ——T T
0 2 4 6 8 10

number of higher—order modes

Fig. 3. Magnitude of the reflection coefficient as a function of the
number of higher order modes at f =30 GHz for a curved microstrip
bend with «a=90°, R/w=2, w=73 um, 2=100 pm, and €, =12.9.
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Fig. 4. Magnitude of (a) the reflection coefficient and (b) the transmis-
sion coefficient as a function of frequency for a curved microstrip
bend with & =90° and R/w =2, a chamfered right-angle bend [7],
and a right-angle bend [7). w=73 pm, =100 pm, and €, =129
(Z=50 Q).

sponding right-angle and chamfered right-angle bends,
characterized by the empirical CAD expressions given in
[7] or by the magnetic wall waveguide model given in [8]
and [9]. Fig. 4 shows the results for a nominal 50 Q
MMIC line on a 100 wm semi-insulating GaAs substrate.
The results for the nominal 50 Q and 35  microstrip
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Fig. 5. Magnitude of (a) the reflection coefficient and (b) the transmis-
sion coefficient as a function of frequency for a curved microstrip
bend with @ =90° and R /w =2, a chamfered right-angle bend [9],
and a right-angle bend [8]. w=0.6 mm, £ =0.635 mm, and ¢, =9.8
(Z=50 Q).

lines on a 0.635 mm alumina substrate are shown in Figs.
5 and 6, respectively. In all three cases an improvement in
the transmission properties with respect to the right-angle
and chamfered right-angle bends is apparent, particularly
for high frequencies.

It should be noted that the accuracy of these second-
order perturbation solutions depends on the curvature R,
(or R, /w,) of the curved waveguide model; higher order
terms may need to be included, especially when the inner
radius of the microstrip goes to zero (i.e., R /w — 0.5).
However, the first-order perturbation solutions for the
microstrip ring resonator as given in [12] are very close to
the exact solutions computed in [11] for a wide range of
parameters; therefore a corresponding superior accuracy
of the second-order perturbation solutions is expected
here including the results shown in Figs. 4-6. In addition,
for moderate microstrip curvature, e.g. R = w and 2w, the
results based on the waveguide model presented in this
paper are in good agreement with experimental data for
microstrip curved bends on thin GaAs substrates [13].
The reflection coefficient as a function of the radius of
curvature and the angle for a nominal 50 Q@ MMIC line
on a 100 pm semi-insulating GaAs substrate is shown in
Figs. 7 and 8.
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Fig. 6. Magnitude of (a) the reflection coefficient and (b) the transmis-
sion coefficient as a function of frequency for a curved microstrip
bend with @ =90° and R /w =2, a chamfered right-angle bend [9],
and a right-angle bend [8]. w=1.2 mm, A= 0.635 mm, and ¢, =9.8
(Z=35Q).
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Frequency, GHz

Fig. 7. Magnitude of the reflection coefficient as a function of fre-
quency for a curved microstrip bend with R/w=2, w=73 um,
h=100 pm, €, =12.9 (Z =50 (1), and various angles a.

IV. ConNcLusioN

A method for calculating the frequency-dependent
scattering parameters of curved microstrip bends has been
described and computational results have been presented.
The results have been compared with those obtained for
the right-angle and the chamfered right-angle bends and
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ISyl , dB

20 30 40 50 60
Frequency, GHz

Fig. 8. Magnitude of the reflection coefficient as a function of fre-
quency for a curved microstrip bend with a = 90°, w = 73 um, A =100
um, €, =129 (Z =50 (), and various radii R.

show an improvement in the transmission properties. The
results for the scattering parameters of the curved mi-
crostrip bend converge very fast with increasing number
of higher order modes considered and have been shown
to be consistent for large curvatures and bends with small
angle.
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