

Ansoft 协同设计方法

-复杂波导系统设计

2008-06-12

ANSOFT CORPORATION

前言	2
一、 Ansoft 复杂无源器件仿真解决方案	2
二、 波导滤波器的设计	4
(一) Iris 波导滤波器设计	4
1) 在 HFSS 中进行的基本单元建模和仿真	4
2) 建立 HFSS 与 Ansoft Designer 间的动态链接	
3) 在 Ansoft Designer 中求解	
4) 在 Ansoft Designer 中完成滤波器的优化设计	
5) 将 Ansoft Designer 中优化后的 IRIS 滤波器 expo	ort 到 HFSS 进行验证17
(二) Combline 滤波器设计	
1) 在 HFSS 中进行基本单元的建模仿真	
在求解设置部分可参考前述 IRIS 波导滤波器的设置,所	所不同的是求解频率为 0.4GHz
2) 在 HFSS 中进行基本单元的参数化扫描	41
3) 建立 HFSS 与 Ansoft Designer 间的动态链接	
4) 在 Ansoft Designer 中完成滤波器的优化设计	
5) Ansoft Designer 与 HFSS 的仿真结果对比与讨	论48

前言

HFSS 精确可靠的三维电磁场仿真彻底改变了传统设计流程, 调试硬件原型的传统设计 手段被对三维电磁场仿真模型的设计和优化所取代,大大地缩短了设计周期。尽管如此, Ansoft 仍不懈地致力于优化使用者的仿真设计流程,提高优化效率,从而进一步缩短设计 周期。

现今对于滤波器或其他复杂波导器件的理论研究和设计技术已经非常成熟,但设计工作 依旧面临很多问题。电路仿真具有很高的速度,可快速的仿真出滤波器各个部件的集总电参 数,但是在电磁场求解工具中设计真实的 3D 微波元件却需要花费数周的时间。本文主要阐 述了电路仿真器如何与 3D 场仿真器协同完成设计工作,从而使设计周期从原先的数周缩短 为数日。这种解决方案的核心是"场路结合、协同仿真",优点是有效的结合了三维电磁场 仿真的精度和电路仿真的速度,使微波无源器件的设计流程进入了新的时代。

下面我们将以几个具体的例子来说明这套通过"场路结合、协同仿真"来设计复杂无源 器件的解决方案。

一、 Ansoft 复杂无源器件仿真解决方案

当电磁场仿真被设计者广泛接受后,我们进一步需要把这种技术应用到各种需要精确仿 真求解的更大规模的设计问题中。这里就产生了一对速度与精度之间的矛盾,因为我们知道 电路仿真速度是很快的,传统的仿真方法一般都是基于等效电路的。我们希望有一种切实可 行的解决方案:能提供快速、具有电磁精度、且求解问题的规模不受限制。因为作为工程 设计软件,仅仅解决求解精度问题是不够的,更重要的是能够提供一种高效率的、可操作性 强的设计流程。"场路结合、协同仿真"的思路就是基于这种实际工程中的需求而产生的。

Ansoft 提供的这套复杂无源器件仿真的解决方案如下图所示:

首先,一个复杂的无源器件被拆分成若干基本单元,对于每个基本单元在 HFSS 中建立 三维模型进行电磁场仿真和参数化扫描。参数化扫描的目的是为了后面将要进行的自动优化 设计提供基本数据。在经过合理的划分基本单元之后,每个单元通常都是结构简单且电尺寸 小。对于这样的结构,在 HFSS 中很容易就能得到收敛的仿真结果。在这一步,我们充分利 用了场仿真的精度为后面提供了精确的基础数据源。

接着,HFSS 中的基本单元通过场到路的"协同仿真"链接到 Ansoft Designer 的电路 设计原理图中。这样以来,整个复杂器件的导波特性由电路仿真完成,电路原理图中的元件 即为 HFSS 中的基本单元。

然而,如果"协同设计"仅仅停留在拟合 S 参数文件进行电路仿真的层面上,就只能用 于设计验证,而不能用作设计。因为当仿真结果达不到设计指标时,我们无法对模型进行优 化一显然在电路仿真层面上,只剩下基本元件的 S 参数,所有三维结构信息全部都丢失了, 因而想要无法实现了对整个结构进行电路级的优化--如果应用不同厂家的电磁场仿真器 和电路仿真器就必然面临这种情况。

Ansoft"协同设计软件包"的最大优势在于它同时包含强大的三维电磁场仿真工具 HFSS 和电路仿真工具 Ansoft Designer,当HFSS 中的基本单元以元件的形式插入 Ansoft Designer 的电路设计原理图时,除了 S 参数之外,所有的变量(如尺寸、材料特性)和参数化扫描结果都可被动态链接进来,从而为基于电路仿真的优化设计提供基础数据。在 Ansoft Designer

中进行优化时,即使是 HFSS 中参数化扫描没有的点,也可以由插值算法得到,整个器件的优化过程可以直接在电路级进行。

在电路级完成整个器件的优化后,原理图还可以通过脚本直接输出到 HFSS 进行验证,从 HFSS 中输出三维模型到机械 CAD 软件。

并且,针对几种波导器件类型,如 Iris 波导滤波器、腔体滤波器和分支线耦合器,Anosft 还可提供给 Ansoft Designer 用户波导器件库。器件库不仅包含所有元件的 HFSS 模型,还 有帮助实现设计自动化的脚本文件,并且支持 DOE【1】的设计方法。

接下来我们看几个应用这种解决方案设计复杂无源器件的实例。

二、 波导滤波器的设计

(一) Iris 波导滤波器设计

Iris 滤波器经常被用作窄带滤波器的设计。一个带宽很窄的滤波器要求的求解精度是很高的,因为每次自适应求解后滤波器的工作频带都会微微地向高频处漂移,加之 S12 曲线的斜率十分陡峭,因此通常需要较多的求解次数才能收敛。然而,当将 Iris 波导滤波器拆分成单元后,每个单元的频响都不会呈现出带通的特性,就不存在收敛难的问题了。在这种设计上应用场路结合的解决方案十分划算。详细的设计步骤可总结如下:

1) 在 HFSS 中进行的基本单元建模和仿真

如下图 2 (a)所示为一个典型的 Iris 波导滤波器。根据这样的外形,我们可以轻易地 将它分解为图 2 (b) 和 (c) 两种基本单元。基本单元(b)表示的是滤波器的 IRIS 部件; 对于电特性来说,(b) 应该只包含 IRIS 隔膜部分,但是由于高次模的问题在建模的时 候不能这样处理,我们必须包含两段连续的波导。通过 HFSS 中 waveport 的 deembed 功能可将 S 参数的参考平面推到 IRIS 隔膜的根部。

(a)

图 2

波导采用 WR-90 标准波导,波导截面的长和宽分别为 a 和 b,侧边的倒角采用 HFSS 中的 Fillet 功能:选中需要倒角的边(一次可同时选中多条边), 3D Modeler-> Fillet。IRIS 具体尺寸如下:

Properties: WG1_IRIS - HFSSDesign1 × Local Variables 🖲 <u>V</u>alue 🔘 Optimization C Tuning C Sensitivity C Statistics Evaluated Value Name Value Unit 0.9 0.9in in a 0.4 Ъ in 0.4in (deembed+max(rad1,rad2))*2+iris_thickness 3.8in ltot rad1 0.05 0.05in in 0 rad2 in Oin iris_width 0.4 in 0.4in iris_thickness 0.1 0.1in in deembed a*2 1.8in > < 🔽 Show Hidden Remove <u>A</u>dd. . . 确定 取消

接下来,我们将对这两种基本单元建模并求解。首先,波导结构的求解可使用"Driven Model"求解类型;

Solution Type: WG1_IRIS - HFSSDesign1	×	
Driven Modal		
C Driven Terminal		
C Eigenmode		
OK Cancel		

如图 2(b)所示,波导插入膜片处采用的倒园角的工艺。在这些倒角处可配合相应的 手动网格剖分。选定波导结构,右键选择"Assign Mesh Operation"中的"Surface Approximation",指定"Normal deviation"为5度(90度的角共切18个面)。

Surface Approximation	×
Name: SurfApprox1	
Maximum Surface Deviation	
Ignore	
Set maximum surface deviation (length):	
0.01 mm 💌	
Maximum Surface Normal Deviation	
O Use defaults	
Set maximum normal deviation (angle):	
5 deg 💌	
Maximum Aspect Ratio	
Use defaults	
Set aspect ratio: 10	
OK Cancel	

波导器件的**求解设置**可参照以下步骤:

- i. 插入一个新的求解设置,以这个波导滤波器为例,如果需扫频频带为 8~ 12GHz 的话,选择 12GHz 为求解频率;
- ii. 为了避免与后面在 Ansoft Designer 中的仿真产生累积误差,在 HFSS 中 需设置较高的求解精度:
 - i. Maximum Number Of Passes(最大迭代次数) = 20

ii. Maximum Delta S(S参数矢量差的最坏值) = 0.01

Solution Setup	
General Options Advanced Defaults	
Setup Name: Xband	
Solution Frequency: 12	GHz 💌
Solve Ports Only	
Maximum Number of Passes:	20
Convergence per pass	
Maximum Delta S	0.01
O Use Matrix Convergence	Set Magnitude and Phase
Use Defaults	

- iii. Maximum Refinement Per Pass (每次迭代最多增加的网格量占上一次网格量的百分数) = 30
- iv. Minimum Number Of Passes(最小迭代次数) = 3

Solution Setup			
General Options Advanced Defaults			
☐ Initial Mesh Options			
Target: 0.33	🔲 Use free space lambda		
Adaptive Options Maximum Refinement Per Pass: Maximum Refinement: Minimum Number of Passes: Minimum Converged Passes:	30 % 100000 3 1 1		
Solution Options			
Use Low-Order Solution Basis			
Use Defaults			

v.	Port Field Accuracy	(端口求解精度)	= 0.1%
----	---------------------	----------	--------

	Options Advanced Defaults
Initial	Mesh Options
Γ	Use Current Mesh from
	C Current Design
	Other Design Setup Link
Adap	tive Options
Γ	Also Use Dutput Variable Convergence
	Output Variable:
	Max Delta Per Pass: 0.05
	Setup Context
Solut	on Options
	Use Absorbing Boundary (ABC) On Ports
	eport Adapt Options
Wav	sharr, make a kang n
Wavı Pi	nt Field Accuracy: 0.1 %
Wavi Pi	ort Field Accuracy: 0.1 %
Wavi Pi	ort Field Accuracy: 0.1 % Set Min/Max Triangles Minimum Number of Triangles: 100
Wavi Pi	ort Field Accuracy: 0.1 %

扫频设置:

- i. 考虑到后面要使用与 Ansoft Designer 的协同仿真,每个求解设置下必须 只包含一个扫频设置(在 HFSS 单独使用时,扫频设置的数目不受限制), 并且扫频设置使用默认名称"Sweep1"
- ii. 对于波导结构来说推荐使用快速扫频;只有当仿真的频段达到波导的截至频率时,才推荐使用插值扫频;

取消"Save Fields"前面的勾选可减少硬盘空间的需求;

Edit Sweep	×
Sweep Name: Sweep1	
Sweep Type	DC Extrapolation Options
 Discrete 	Extrapolate to DC
 Fast 	Minimum Solved Frequency 0.1 GHz 💌
C Internelation	Snap Magnitude to 0 or 1 at DC
	Snapping Tolerance 0.01
Setup Interpolation Convergence	
Max Solutions: 50	Time Domain Calculation
Error Tolerance: 0.2 %	
,	
Frequency Setup	Frequency
Type: Linear Step 💌	
Start 8 GHz 🔻	Display >>
Stop 12 GHz V	
Shap Size 0.01	
🗖 Save Fields	
	Cancel

端口设置:

- i. 使用波端口(waveports)
- ii. 仅求解一个模式 (主模)
- iii. 在每个基本单元的两个端口上都定义积分线,这样可以避免求解出的电场相位有 180 度的相差;

iv. 这样以来,在每个端口处都只求解主模;我们知道在波导内部,IRIS的存在会产生高次模(消逝模式);然而,这些模式会迅速呈指数衰减,当波端口距离 iris 足够远时,这些高次模还没反射到端口处就已经衰耗到很小的数量级(通常小于-20dB时,高次模可被忽略不计),工程上可忽略不计;

在 IRIS 基本单元中,我们可以设置波导长为 2*a, a 为波导截面的宽;

- v. 在这个例子中,我们把波导壁简化为理想导体,可无需画出波导壁,HFSS 会默认仿真物体与背景交界的面为 PEC,这将不考虑金属损耗;
- vi. 如果结构中存在两个放置很近的 IRIS,这种情况下可能除了主模以外的 少数几个高次模在到达波端口之前还没有得到很好的衰减,那么你需要 将两个 IRIS 一并当作一个基本单元在 HSS 中仿真;

2) 建立 HFSS 与 Ansoft Designer 间的动态链接

当对 HFSS 中的基本单元求解和参数化扫描完成后,就可以着手建立 HFSS 到 Ansoft Designer 的动态链接了。

在 Ansoft Designer 中插入一个电路设计, Project-> insert circuit design, Layout technology 选择 none。

我们现插入 IRIS 基本单元,下图为 IRIS 基本单元的 HFSS project。

如下图所示,在 project manager 中,右键 circuit,插入一个 HFSS 子电路。这样

HFSS 中的设计会以 N 端口元件的形式插入到 Ansoft Designer 的电路设计中来。

接着,你会看到一个动态连接设置的窗口 "Dynamic NPort import"。

"File"栏,通过路径查找选中需要链接进来的 HFSS 基本单元 project;

"Design"栏用来选择具体是哪个 design,因为一个 HFSS project 中可以同时管理 多个 design,(Tips:我们可以将所有 HFSS 基本单元的设计都存放在一个 HFSS project 下,然后给每个基本单元的设计做不同的命名,这样便于查找);

"Solution"栏,当一个 design 中包含多个求解设置(solution setup)时(比如分 多个频段求解),在这里可以选择某一个求解及扫频设置。具体选择哪一个要根据你 在 Ansoft Designer 中需要做的频率扫描范围而定。

选择"interpolate existing solutions",当 Designer 的求解涉及到 HFSS 的仿真结果 以外的值时,(如 linear network analysis 中的扫频点,或在 Designer 中进行优化时的 优化变量值),Designer 会根据插值算法计算出缺少的数据,这个功能在进行扫频和 优化时极为有用。否则,也可以选择"simulate missing solutions",这样当遇到没有求 解数据的电视,HFSS 的求解引擎会被自动的唤起进行求解。

插值算法还包含一些高级设置一"advanced setting",提供根据不同的曲线特征选择相应插值算法的功能。关于这部分的细节就不在这里赘述了,感兴趣的设计者可参考 online help 中的相关内容;否则,按照默认设置即可。

"Information"中,给出了 pin 脚数目的信息等,一般与 HFSS 中的端口数目一致。

"Parameter" 中可以看到所有 HFSS 中定义的变量,它们能够被乖乖地传递到 Ansoft Designer 中,用做优化。

Dynamic MPort Import	
Selection	
File: D:\11-Marketing\Cosimulation\WG1_IRISg.hfs:	
Design HFSSDesign1	
Solution Xband : Sweep1	
Transmission line model	
Interpolate existing solutions Advanced Settings.	
C Simulate missing solutions	
I✓ Save project after simulate	
Show common reference node	
Number of pins: 2 Edit Project	
Solution: Fast Sweep 8.2 GHz-12 GHz	
Number of frequency points: 421 Clear Solution Cache	•
Parameters:	
Parameter Value	
a 0.9in	
b 0.4in	
Itot (deembed+max(rad1,rad2))*2+iris_thickness	
rad 0.00m	
OK Cancel	
le: D:\11-Marketing\Cosimulation\WG1_IRISg.hfs:	
esign HFSSDesign1	
olution Xband : Sweep1	
Transmission line model	
Interpolate existing solutions Advanced Settings	
C Simulate missing solutions	
Save project after simulate	2
Unload project after use	
Interpolation algorithm: Automatic	•
Number of pins: 2	
Solution: East Sween 8.2 GHz	
Number of Ferroman exists	
Number of frequency points:	

另一种基本单元如图 2 (c) 所示为一端空波导,它可用来调节相邻 IRIS 之间的间隔。我们可以利用两种方法来实现这段空波导。第一种方法大家都能想到,就是做一个两端口波导,然后将波导的长度进行参数化扫描,作为 Designer 中优化的基础数据,这里就不再赘述了。

我们这里重点介绍一种更方便快捷的方法:利用"transmission line model"来方便的链接进一端均匀传输线。当 HFSS 的设计被链接到 Ansoft Designer 时,除了端口的特性阻抗外,端口模式的传播系数(包含衰耗和相移因子)也都会被传递到 Designer。 对于均匀传输线,在 HFSS 中只需设置一个端口,Designer 便会根据这个端口的特性 阻抗和波传播系数计算出不同长度情况下的传输线 S 参数。在这个过程中,仅仅是不断的调用 HFSS 的后处理引擎,无需重新求解,因此速度非常快。

Component	name: HfssData3	
-Selection-		
File:	D:/ansoft/Designer3/userlib/Wa	aveGuides/WG
Design	HFSSDesign1	
Solution	Xband : Sweep1	•
Trans	mission line model WavePort1	-
 Interp Simul ✓ Save ✓ Unloa ✓ Show 	olate existing solutions ate missing solutions project after simulate ad project after use common reference node	Advanced Settings
Number o Solution: Number o Paramete	f pins: 1 Fast Sweep 8.2 GHz-12 GHz f frequency points: 421 rs:	Edit Project
Parame	er Value	
a b	0.9in 0.4in	

当动态链接设置好之后,基本单元可通过简单的 ctrl+c, ctrl+v 复制出多个来,比如 我们要设计一个包含 4 个 IRS 的滤波器。当元件放置好之后,加上端口,如下图所示:

	Port2
a=22.86mm b=10.16mm	a=22.86mm b=10.16mm
iris_thickness=2.54mm	HFSSLineLength=76.2mm
rad1=1.27mm	
rad2=0mm	

3) 在 Ansoft Designer 中求解

Ansoft Designer 中的求解设置相比 HFSS 要简单得多。如下图所示,添加一个"Linear Network Analysis",然后设置扫描范围 8.2~12GHz 即可。

C Excitations Ports Reference Reference Reference So	lution Setup			
Add Solution Satup Ø Add Solution Options Import Solution Ø	Disable this analysis Analysis Nume L Analysis Type L Category F	ineer Betwork Analysis	>	
Group Delay Frenche Group Delay Calcule Ferturbation	Sveep Variables	/Value Sync		R
ت	Variable F		Sweep Values	
rti. 7	Add C Single value C Linear step C Linear count C Decade count C Octave count C Exponential count	Start 8.2 GHz ▼ Stop 10 GHz ▼ Step 0.005 GHz ▼	Add >> C Remove Delete	1.005GHz
	Offset from F1	weep value as offset from F1	ОК	Cancel

根据初始设计得到的 S11 和 S21 仿真结果如下所示。滤波器的带通特性还没有体现出来,显然需要做优化。

4) 在 Ansoft Designer 中完成滤波器的优化设计

HFSS 中的变量被传递到 Ansoft Designer 中之后,都显示为基本单元的属性。进行 优化之前,要重新设置变量。

下面我们以优化 IRIS 间的距离为例。根据 IRIS 带通滤波器结构对称的特性,5 段 空波导的长度可以如下分别定义变量为 L0, L1, L2;其中 L0 的长度与带通特性无关,我们只需要优化 L1 和 L2 即可。

F	, robe	ert	ies: IRIS v g	Wakromaszorfi Waxreader filter - Circuitz	- Ci	Wakenergeri Waartentui 			
	Paran	net	er Values Gener	al Symbol Property Di	splay:	s			
	œ	٧	lue C (Optimization 🔿 Tun	ing	🔿 Sensitivity	C Statistics		
					15				
			Name	Value	Unit	Evaluated Value		Descrip	
1			a	a		0.9in			
			Ъ	Ъ		0.4in			
			ModelName	FieldSolver					
		<	HFSSLineLength	L1		15mm			
			Data	WG1_WG_Xband_Simula					
			Status	Active					
ir		<	a)		>	

设置优化目标之前,要先选定参与优化的变量。如下图所示,"design properties"的 "local variables"中将 L1 和 L2 勾选。另外,为 L1 和 L2 设置适当的初始值,以 及取值区间也会提高优化效率和效果。

Tools Tunnos Welb		1.11			- Invi				
Add Model Data	+ 8 0. 1919	1 I''' 12 1 8	1 0 C						
Add SybCircuit		ə 🖸 🔍 🦑	7				_		
Add Solution Setup						1	~		
Optimetrics Analysis									
Brauna Natlist									
Analyza									
Tune									
Create Report									
Accumulate Report									
Delate All Reports									
Tanant Solution			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			_			
INDOPI SOLUTION	The second se	efilter -	Circuit2						
Pr.	operties: IKISW	ALL DOOL							
Optimetrics Results	arameter Defaulty Lo	ocal Variable	General						
Optimetrics Results View DC Bias	arameter Defaulty Lo	ocal Variable	5 General						
Optimetrics Results View DC Bias Schematic Editor	arameter Defaults Lo <u>Y</u> alue	ocal Variable Optimization	General C Tuning	C Se	nsitivity	C Statis	stics		
Optimetrics Results View DC Bias Schematic Editor Lagout Editor	arameter Defaulte	ocal Variable Optimization	General ∩ ⊂ Tuning	C Se	nsitivity	C Statis	ities		
Optimetrics Results View DC Bias Schematic Editor 2 Lagout Editor 3 D Viewer	arameter Defaultr Lo Yalue Name	ocal Variable Optimization Include	General n C Tuning Nominal Value	C Se	nsitivity Unit	C Statis	utics Unit		
Optimetrics Results Pr View DC Bias P Schematic Editor Lagout Editor 20 Viewer Close Editors	arameter Defaults Lo Qualue Nume a	Ocal Variable Optimization Include	General n C Tuning Nominal Value 0.9in	C Se Min 0.45	nsitivity Unit in	C Statis	utics Unit in		
Optimetrics Results Pr View DC Bias P Schematic Editor Lagout Editor 3D Viewer Close Editors	operties: INISU arameter Defaulte Lo Value Nume a b	Ocal Variable Optimization Include	General n C Tuning Nominal Value 0.9in 0.4in	C Se Min 0.45 0.2	nsitivity Unit in in	C Statis Nax 1.35 0.6	utics Unit in in		
Optimetrics Results View DC Bias Schematic Editor Lagout Editor 3D Viewer Close Editors TRL	operties: INISU arameter Defaulte Lo Value Name a b b	Qptimization	General	C Se Min 0.45 0.2 0.2	Unit In In In In In	C Statis Max 1.35 0.6 0.6	tics Unit in in in		
Optimetrics Results View DC Bias Schematic Editor Lagout Editor 3D Viewer Close Editors TRL Smith Tool	yercles: IKISV arameter Defaulte Value a b vi v2	Ocal Variable Optimization Include	General	C Se Min 0.45 0.2 0.2 0.2 0.2	Unit Unit in in in in	C Statis Max 1.35 0.6 0.6 0.6	Unit in in in in in		
Optimetrics Results View DC Bias Schematic Editor Lagout Editor 3D Viewer Close Editors TRL Smith Tool Design Properties	yalue Value Nume a b v1 v2 10	Ocal Variable Optimization Include	General General Nominal Value O.9in O.4in 10.92m 7.11m 45.72m	6 Se Min 0.45 0.2 0.2 0.2 0.2 0.5	Unit In In In In In In In In	C Statis Max 1.35 0.6 0.6 0.6 50	Unit in in in in nm		
Proprimetrics Results View DC Bias Schematic Editor Lagout Editor 3D Viewer Close Editors TRL Smith Tool Design Properties Design Properties	yalue Value Nume a b v1 v2 10 L1	Occal Variable Optimization	Soneral Nominal Value 0.9in 0.4in 10.92mm 7.11mm 45.72mm 15mm	C Se Min 0.45 0.2 0.2 0.2 0.2 0.5 7.5	Unit In In In In In In In In In In In In In	C Statis 1.35 0.6 0.6 0.6 50 22.5	Unit in in in in in me me		
Provide the second seco	Operties: INISU arameter Default Lo Value Nume a b v1 v2 L0 L1 L2	Detaining of the second	Soneral Nominal Value 0.9in 0.4in 10.92mn 7.11mn 45.72mn 15mn 15mn	C Se Min 0.45 0.2 0.2 0.2 0.2 0.5 7.5 0.5	Unit in in in m m m m m m m m	C Statis 1.35 0.6 0.6 0.6 50 22.5 30	ttics Unit in in in in in n m n m		
Pr Optimetrics Results View DC Bias Schematic Editor Lagout Editor 3D Viewer Close Editors TRL Smith Tool Design Froperties Edit Notes Bill of Materials	Operties: INISU arameter Default Lo Value Nume a b v1 b v2 L0 L1 L2	Occal Variable Optimization	General Tuning Nominal Value 0.9in 0.4in 10.92mm 7.11mm 45.72am 15am 15am	C Se Min 0.45 0.2 0.2 0.2 0.2 0.5 7.5 0.5	Unit Unit in in in in an an an an	C Statis 1.35 0.6 0.6 0.6 50 22.5 30	Unit in in in nm mm nm		
Provide a second	yourstess Information araneter Defaults Lo Value Nume a b v1 v2 LO L1 L2	Include	General General Nominal Value 0.9in 0.4in 10.92nn 7.11nn 45.72nn 15an 15an	C Se Min 0.45 0.2 0.2 0.2 0.2 0.5 7.5 0.5	Unit Unit in in in an an an an	C Statis 1.35 0.6 0.6 0.6 50 22.5 30	Unit In in in in m m m m		
Provide the second seco	yalue Value Nume a b v1 v2 L0 L1 L2 b	Qptimiration	General Tuning Nominal Value 0.9in 0.4in 10.92an 7.11an 45.72an 15an 15an	C Se Min 0.45 0.2 0.2 0.2 0.5 7.5 0.5	Unit Unit in in in in m m m m	C Statis 1.35 0.6 0.6 50 22.5 30	ttics	Show Midden	
Priver DC Bies Schematic Editor Construction Schematic Editor Construction Construction Construction Priver Construction Priver Construction Priver Construction Priver Construction Priver Priver Priver Priver Priver Priv	Add	Qptimization	General Mominal Value 0.9in 0.4in 10.92m 7.11m 45.72m 15m 15m	C Se Min 0.45 0.2 0.2 0.5 7.5 0.5 7.5 0.5	Unit In In In In In In In In In In In In In	C Statis 1.35 0.6 0.6 50 22.5 30	ttics Vait in in nn nn nn	Show Hidden	

接着定义优化设置。在"Optimetrics"中 add 一个"Optimization"。

- 🧑 -	R	Paste		1
E- C Res		Add	(🗙 Optimization
Defini vgfilter_	4	Analy <u>r</u> e Tuning	•	Sensitivity Statistical
🖌 Circui	_	<u>V</u> iew Analysis Result		

如下图所示,一个优化设置中可同时包含多个优化目标,并且可同时对多个变量进行优化。(优化设置中的更多细节功能这里就不再赘述了,请参考 online help)

etup Opt	imization					
Goals Va	riables General					
Optimizer	Gradient		💌 🗖 Randomize Se	ed		
Max. No. c	of 1000					
Cost	,					
Solution	Calculat	ion	Calc. Bange	Condition	Goal	Weight
NWA1	db S11		F (From 9.8GHz to 10GHz)	<=	[-30]	[1]
NWA1	db_S21		F(Single value at 9.4GHz)	<=	[-30]	[1]
NWA1	db_S21		F(Single value at 10.505GHz)	<=	[-30]	[1]
	. 1				. f	a
Add	Delle:	te	dit Calculation	dit Cal. F	Sange li t	. Goal/Weight.
Acceptable	e 0				🕅 Show	Advanced Opti
						_
24 Jan 2007		Anso	oft Corporation XY Plot 1	[确定 :36:43	取消
24 Jan 2007 20	.00	Anso	off Corporation XY Plot 1 Circuit2	11	确定 :36:43 dB MM dB	<u>取消</u> (S11) [db] (S11) [db] (S21) [db] (S21) [db]
24 Jan 2007 20 0	.00	Anso	off Corporation XY Plot 1 Circuit2		确定 :36:43 dB MM dB	₩ (S11) [db] (S11) [db] (S11) [db] (S21) [db] (A1
24 Jan 2007 20. 0. -20. ≻ -40.	.00	Anso	Off Corporation XY Plot 1 Circuit2		确定 :36:43 dBi	取消 (S11) [db] (A1 (S21) [db] (A1
24 Jan 2007 20. 0. ∑ -40. -60.	.00	Anso	Off Corporation XY Plot 1 Circuit2		确定 :36:43 dBi	取消 (S11) [db] (A1 (S21) [db] (A1
24 Jan 2007 20. 0 -20. 5 -40. -60. -80.	.00	Anso	Dift Corporation XY Plot 1 Circuit2		确定 :36:43 dBi	取消 (S11) [db] (A1 (S21) [db] (A1
24 Jan 2007 20. 0. -20. 5 -40 -60 -80. -100		Anso	off Corporation XY Plot 1 Circuit2		确定 :36:43 dBi	取消 (S11) [db] (XA1 (S21) [db] (XA1

5) 将 Ansoft Designer 中优化后的 IRIS 滤波器 export 到 HFSS 进行验证

Ansoft Designer 中的通过 HFSS 动态链接的到的原理图可通过脚本程序直接输出到 HFSS 成为一个 ready to solve 的设计。在 Ansoft Designer 的波导库中包含这样的脚本程序。 这样就形成了一个工程设计的完美闭环。

在 Ansoft **DhrigGer** 的菜单栏, Tools->Run Script,运行 ExportToHFSS.vbs 脚本(改脚本 layout->export to hfss生成一个.vbs脚本文件,通过hfss打开脚本文件从而进行仿真验证.

需配合 Ansoft 波导库使用), Ansoft Designer 中的 Iris 滤波器原理图就直接 layout 到 HFSS 了。我们接下来可以对比一下 HFSS 和 Designer 中对整个滤波器的仿真结果。

如下图所示, 虚线部分为 HFSS 的仿真结果, 实线部分是 Designer 的仿真结果, 可以看出, 不论是在通带范围、带外抑制, 还是 ripple 的大小上, 两种仿真结果都十分吻合。

(二) Combline 滤波器设计

接下来我们以一个的 combline 同轴腔体滤波器为例进一步说明协同设计的用法。这种 类型的滤波器经常用作大功率的无线通信以及广播中。Chebychev 带通滤波器在通带内有波 纹,比起 Butterworth 型(通带内最平坦)滤波器具有更强的带外抑制比。通常,设计一个 Chebychev 型带通滤波器需要考虑以下指标:波纹水平(ripple)、中心频率、阶数、带宽。 这些指标就能将整个滤波器的频响特性描述出来。以接下来要设计的滤波器为例,中心频率 为 400MHz,带宽为 15MHz。

当然不止一种结构能够达到上述设计指标,前面介绍的 IRIS 波导滤波器就是一种,而 在本节中介绍的滤波器是由多个金属棒和腔体构成的。由图 3(a)所示,金属棒在底部与 腔体连接,在顶部伸进金属扣中,但并不接触。每个金属棒和金属扣都形成了一个谐振器。 在输入和输出端,同轴线与能量辐射器(即与同轴相连的圆盘)能够提供必要的能量耦合。

对于结构的设计中包含许多尺寸变量,我们选择其中的某些尺寸赋予固定值,比如金属 <u>棒谐振器半径、金属扣尺寸(内外半径和高)、辐射器尺寸、腔体尺寸。然后我们通过对下</u> <u>列尺寸的调整来达到设计指标:中间3根金属棒的高度、外侧2根金属棒的高度、金属棒间</u> 的距离以及辐射器距离最外侧金属棒的距离。根据结构的对称性,也就是说我们只要通过调 整5个变量的尺寸就可以完成对这个由5个金属棒谐振器构成的滤波器的设计了。

对于该类滤波器的设计原理,请参考 B.Mayer 博士和 Martin Vogel 在 2002 年发表的论 文"Design Chebychev bandpass filters efficiently"。在这里,我们着重介绍的是协同仿真部分 的操作方法。使用者掌握设计方法之后便可以自行增减腔体的数目以及调整结构尺寸来完成 自己的设计任务了。

1) 在 HFSS 中进行基本单元的建模仿真

我们可将这个同轴腔体滤波器如下分割为由图 3(b), (c)的基本单元组成的结构。与前述的滤波器设计流程相似,我们也需要对每个基本单元在 HFSS 中进行建模和仿真。

(a)

图 3

我们先对图 3 (b) 进行建模,考虑到后面要对模型进行优化的需要,最好一开始就采用参数化建模,HFSSv9 之后的版本都可以方便的支持全参数建模。首先将一系列的关键尺寸添加为变量。

考虑到在 H 平面上波导器件可能有 U 型拐弯,因此这里不采用对称边界的方式建模,设计者可根据自己的情况选择是否采用对称平面以缩小求解空间。

然后对图 3 (b)中的结构分部件建模如下,我们将它命名为 Bucket-Resonator-feed.hfss:

Prop	ert	ies: CombWG3_Bucke	tResonatorFeed - HFSSDes	sign1 -	- Modeler		X
Comm	and]					
	_		1				
		Name	Value	Unit	Evaluated Value	Description	
		Command	CreateCylinder				
		Coordinate System	Global				
		Center Position	0,0,0	mm	Omm , Omm , Omm		
		Axis	Ч				
		Radius	antenna_radius		13mm		
		Height	-antenna_length		-4mm		
	<					>	
	,				E au		
) Sh	ow Hidden	
						确定	<u>i</u>
Pron	ert	ies: Comb U G3 Bucke	etResonatorFeed - HFSSDe	signl	- Indeler		
)		- B			
Comm	and						
	_	N		11-21	R. 1. 1. 1. 1. 1.	Description	
	⊢	Mame	Value	Unit	Evaluated value	Description	
	L	Lommand	Move	_			
	L	Coordinate System	Global				
	4	Move Vector	Omm ,Omm , antenna_elevation		Omm , Omm , 15mm		
					🖵 Sh	ow Hidden	

and							
Nam	e	Valu		Unit	Evaluated	Value Des	cript
Command	c	reateCylinder					
Coordinate Sy	stem G	lobal					
Center Positi	on O	mm , spacing+resonator_	radius , b	0)mm , 8mm , ·	40mm	
Axis	Z						
Radius	Ъ	ucket_inner_radius+buc	ket_thickness	9	9mm		
Height	-	bucket_height		-	-5mm		
<							3
						Show Hidden	
	CreateCylind Subtract D bucket in	ler mer					1
rties: Combl	CreateCylind Subtract Ducket in Create Intersect Box4	ler «Cylinde) tRetonatorFeed -	- HFSSDesign1	– Iode	ler		
rties: Combl	CreateCylind Subtract Ducket in Creat Creat Box4	ler ner ⊧Cylinde tRetonatorFeed -	- HFSSDesign1	- Iode	ler	P	
rties: Combl	CreateCylind Subtract bucket in Creato Intersect Box4 IC3_Bucke	ler eCylinde tRevonatorFeed V	- HFSSDesign1	– Tode	ler iit Evalu	nated Value	
rties: Combi nd Command	CreateCylind Subtract bucket in Creato Intersect Box4 IC3_Bucke	er «Cylinde tRe:onatorFeed V CreateCylinder	- HFSSDesign1 alue	– Iode	ler .it Evalu	asted Value	
rties: Combi nd Command Coordinate S:	CreateCylind Subtract bucket in Creat Thersect Box4 CG3_Bucke Ne ystem	tRevonatorFeed Cylinde V CreateCylinder Global	- HFSSDesign1 alue	– Iode	ler it Evalu	nated Value	
rties: Combi Command Coordinate S Center Posit	CreateCylind Subtract bucket in Create Intersect Box4 IC3_Bucket No Box4 IC3_Bucket No Souther Box4	tRevonatorFeed Cylinde V CreateCylinder Global Omm , spacing+resonat	- HFSSDesign1 alue or_radius , b	– Iode	ler nit Evalu	nated Value	
rties: Comb) nd Coordinate S Center Posit Axis	CreateCylind Subtract bucket in Creat Creat Box4 C3_Bucke ne ystem ion	ler PCylinde tReconatorFeed V CreateCylinder Global Omm , spacing+resonat Z	- HFSSDesign1 alue or_radius , b	– Iode	ler it Evalu	nated Value	
rties: Combl nd Coordinate S Center Posit Axis Radius	CreateCylind Subtract bucket in Creat Creat Box4 CC3_Bucke Ne Ne ystem ion	er Cylinde tReconatorFeed V CreateCylinder Global Omm , spacingtresonat Z bucket_inner_radius	- HFSSDesign1 alue or_radius,b	– Tode	Ler ait Evalu	nated Value	
rties: Combi nd Coordinate S Center Posit Axis Radius Height	CreateCylind Subtract bucket in Creat Creat Box4 CG3_Bucke ne ystem ion	er Cylinde tRevonatorFeed V CreateCylinder Global Omm , spacing+resonat Z bucket_inner_radius -bucket_height	- HFSSDesign1 alue or_radius , b	– Tode	Ler it Evalu Onm , & 7nm -5mm	aated Value	
rties: Combl nd Command Coordinate S; Center Positi Axis Radius Height	CreateCylind Subtract bucket in Create To Create Box4 CG3_Bucket he ystem ion	tReionatorFeed - tReionatorFeed - V CreateCylinder Global Omm , spacingtresonat Z bucket_inner_radius -bucket_height	- HFSSDesign1 alue or_radius , b		ler it Evalu	nated Value	
rties: Comb nd Command Coordinate Sy Center Posit Axis Radius Height	CreateCylind Subtract bucket in Creato Intersect Box4 IC3_Bucket ne ystem ion	tRetonatorFeed Cylinde tRetonatorFeed CreateCylinder Global Omm, spacing+resonat Z bucket_inner_radius -bucket_height	- HFSSDesign1 alue or_radius , b		ler it Evalu Omm , & 7mm -5mm	nated Value	

Command	
---------	--

Name	Value	Unit	Evaluated Value
Command	CreateBox		
Coordinate System	Global		
Position	-a/2 ,-pole_length-antenna_length ,Omm		-20mm , -20mm , 0mm
XSize	8		40mm
YSize	pole_length+antenna_length+spacing+resonator_radius		28mm
ZSize	b		40mm
			🦵 Show Hidden
			确定 耳

Command	tResonatorFeed - HFSSDesign1 - Todel	
Name	Value	nit Evaluated Value Descr:
Command	CreateCylinder	
Coordinate System	Global	
Center Position	Omm ,-antenna_length-pole_length ,Omm	Omm, -20mm, Omm
Axis	У	
Radius	feed_inner_radius	1.5mm
Height	-feed_length	-15mm
Solids Solids		· · · · · · · · · · · · · · · · · · ·
Properties: ComblG3_Buc	ketResonatorFeed - HFSSDesign1 - Lo	deler 🔀
Command 🔰		1
Name	Value	Unit Evaluated Value
Command	Move	
Coordinate System	Global	
Move Vector	Omm ,Omm , antenna_elevation	Omm , Omm , 15mm
<		
,		☐ Show Hidden
		确定取消

Prope		Solids pec antenna bucket inner_feed resonator Feflon (tm) Coordinate Systems Global Flanes Lists Sole CreateCylinder Move resonator Sole CreateCylinder Move resonator	tReson	atorFeed - HFSSDes:	ign1 -	View of the second	
Comm	and	1					
		I					1
		Name		Value	Uni t	Evaluated Value	Descr
		Command	CreateCy	ylinder			
		Coordinate System	Global				
		Center Position	Omm ,-a	ntenna_length ,Omm		Omm , -4mm , Omm	
		Axis	Y				
		Radius	pole_ra	lius		1.5mm	
		Height	-pole_l	ength		-16mm	
		6					
	<						>
						🥅 Show Hidder	1
						确定	取消

	pole CreateCylinder 0.0 Move resonator Teflon (tm)		
Prope	erties: CombWG3_Buck	etResonatorFeed - HFSSDes	ignl - Lodeler 🛛 🗙
Comm	and		
		(
	Name	YaLue	Unit Evaluated Value D
	Command	Move	
	Coordinate System	Global	
	Move Vector	Omm ,Omm , antenna_elevation	Omm , Omm , 15mm
	<		
	/		🦳 Show Hidden
			确定取消

⊡…[Z Tef]	CreateCylinder Intersect E-@ Box2 lon (tm)				
ertie	s: CombWG3_Bu	cketResonatorFeed - HFSSDesign	1 - Io	odeler	
and					
	Name	Value	Un	it Evaluated Va	lue Descr
Cor	mmand	CreateCylinder			
Co	ordinate System	Global			
Cer	nter Position	Omm ,spacing+resonator_radius ,Omm		Omm , 8mm , Omr	m
Ax	is	Z			
Ra	dius	resonator_radius		6mm	
Hei	ight	resonator_height		36mm	
				📃 Show	Hi dden
	resonator CreateCylinder Intersect Box2 CreateBox	2		「 Show 确定	Hidden E W
i - 2 ;	resonator CreateCylinder Intersect Box2 CreateBox CreateBox CreateBox CombVG3_Buck	ethesonatorFeed - HFSSDesign1 -	Todel	「 Show 确元	Hidden
Tor rties: nd	resonator CreateCylinder Dintersect Box2 CreateBox createBox createBox createBox createBox createBox box (createBox createBox box (createBox createBox createBox	ethesonatorFeed - HFSSDesign1 - Value	Iodel	F Show 确定 Ler Evaluated Value	Hidden E W Description
Tag	resonator CreateCylinder Thtersect Sox2 CreateBox CreateBox CombTG3_Buck Name Name	ethesonatorFeed - HFSSDesign1 - Value CreateBox	I odel Unit	F Show 确定 Ler Evaluated Value	Hidden E W
Tof Tof Tof Tof Com Coor	resonator CreateCylinder Intersect Box2 CreateBox CreateBox : CombVG3_Buck Name and dinate System	ethesonatorFeed - HFSSDesign1 - Value CreateBox Global	Iodel	F Show 确定 er Evaluated Value	Hidden E W Description
Tof Tof Tof Com Coor Posi	resonator CreateCylinder Intersect Box2 CreateBox combVG3_Buck Name and dinate System tion	ethesonatorFeed - HFSSDesign1 - Value CreateBox Global -a/2,-pole_length-antenna_length,Omm	Tode1	Evaluated Value	Hidden E W Description
Top Top Top Top Top Top Top Top Top Top	resonator CreateCylinder Intersect Box2 CreateBox CreateBox combVG3_Buck Name Mame Mane dinate System tion :e	ethesonatorFeed - HFSSDesign1 - Value CreateBox Global -a/2,-pole_length-antenna_length.Omm a	Todel Unit	Evaluated Value 20nm, -20mm, 0mm	Hidden E W Description
Tries Comm Comm Coor Posi XSiz YSiz	resonator CreateCylinder Intersect Box2 CreateBox CreateBox con (tr) : CombVG3_Buck Name Name Name tion :e :e	ethesonatorFeed - HFSSDesign1 - Value CreateBox Global -a/2,-pole_length-antenna_length.Omm a pole_length+antenna_length+spacingt	Todel Unit	Evaluated Value Comm, -20mm, 0mm Camma	Hidden E B Description

Properties: CombWG3_BucketResonatorFeed - HFSSDesign1 - Modeler

Name	Value	Unit	Evaluated Value	
Command	CreateCylinder			
Coordinate System	Global			Γ
Center Position	Omm ,-antenna_length-pole_length ,Omm		Omm , -2Omm , Omm	Γ
Axis	У			Γ
Radius	feed_outer_radius		3.5mm	Γ
Height	-feed_length		-15mm	Γ

Command

M

Name	Value	Uni t	Evaluated Value	Descript
Command	Move			
Coordinate System	Global			
Move Vector	Omm ,Omm , antenna_elevation		Omm , Omm , 15mm	

Properties: CombWG3_BucketResonatorFeed - HFSSDesign1 - Modeler

Command

Name	Value	Unit	Evaluated Value	Des
Command	CreateCylinder			
Coordinate System	Global			
Center Position	Omm , spacing+resonator_radius , b		Omm , 8mm , 40mm	
Axis	Z			
Radius	bucket_inner_radius		7mm	
Height	-bucket_height		-5mm	

Properties: CombWG3_BucketResonatorFeed - HFSSDesign1 - Modeler

v

	Name	Value	Unit	Evaluated Value	De
Command		CreateCylinder			
Coordin	ate System	Global			
Center	Position	Omm , spacing+resonator_radius , b		Omm , 8mm , 40mm	
Axis		Z			
Radius		resonator_radius		6mm	
Height		-bucket_height		-5mm	

Properties: CombWG3_BucketResonatorFeed - HFSSDesign1 - Modeler

nmand		X		
	Name	Value	Unit	Evaluated Value
	Command	CreateBox		
	Coordinate System	Global		
	Position	-a/2 ,-pole_length-antenna_length ,Omm		-20mm , -20mm , 0mm
	XSize	a		40mm
	YSize	pole_length+antenna_length+spacing+resonator_radius		28mm
	ZSize	Ъ		40mm

al Ve	ariables	ernesonaroi	reeu -	nr saves i gni				
Θ <u>V</u> a	lue C <u>O</u> ptimiza	tion C Tu	ming	C Sensitivity	C Statis	stics		
	Name	Value	Unit	Evaluated Value	Description	Read-only	Hi dden	^
	spacing	2	mm	2mm				
	a	30	mm	30mm				
	Ъ	120	mm	120mm				
	antenna_radius	12.803	mm	12.803mm				
	antenna_length	4	mm	4mm				
	resonator_radius	4.924	mm	4.924mm				
	resonator_height	113.44	mm	113.44mm				
	pole_radius	1.5	mm	1.5mm				
	pole_length	16.707	mm	16.707mm				
	feed_length	15	mm	15mm				
	feed_inner_radius	1.5	mm	1.5mm				
	feed_outer_radius	3.5	mm	3.5mm				
	antenna_elevation	90	mm	90mm				
	bucket_inner_radius	5.909	mm	5.909mm				
	bucket_height	15	mm	15mm				
	bucket_thickness	2.9544	mm	2.9544mm				
Į	<u>A</u> dd <u>R</u> emot	7e				7	Show Hidden	M
							确定	取消

在对于图 3 (b) 中的结构完成了以上的建模工作后,我们将设置两个 Waveport。 Waveport1 是一个典型的同轴端口,定义方法如下所示,图中的积分线从同轴端口截面的内 径指向外径,可作为 S 参数的参考 0 相位。在 HFSSv11 中,即便是同轴端口的填充介质的 材料特性和尺寸也可以作为变量传递到 Ansoft Designer,从而完全实现滤波器的参数化设 计。

Waveport2 可看作一个单脊波导的截面。对于这种端口,我们至少需要求解主模和两个 消逝模式才能得到足够精度的结果。我们知道,每个 waveport 都可看作传输线的横截面, HFSS 在计算端口特征阻抗时有三种方式-Zpi、Zpv 和 Zvi (详见 onlinehelp),使用者可以 根据不同的传输线类型选择相应的端口阻抗的归一化计算方式。这里我们可以选择 Zpv 方 式计算端口阻抗,并且对于每种传输模式定义积分线表明该模式的最大电场方向。

Freq		Port	Zo		Gamma		Lambda	Epsilon
3 (GHz)	WavePort1:1	(35.205,	0.0286)	(91.115,	90)	0.068959	2.1
	WavePort2:1	(65.931,	0)	(58.072,	90)	0.1082	0.85304
	WavePort2:2	(187.25,	90)	(40.792,	0)	0	0
	WavePort2:3	(18.671,	90)	(60.033,	0)	0	0

从仿真结果来看, waveport2 的 Mode 3 与 waveport1 和 waveport2 传输主模间的模式转换分别为-17.7 dB 和 -19.5 dB, 因此根据工程上小于-20 dB 的模式耦合才能够忽略不计的经验值来看, Mode 3 是不能忽略不计的。但是 Mode 2 与 waveport1 和 waveport2 间的模式转换却微乎其微,由于 HFSS 中的端口模式是从主模到高次模依次排列的,通常要求解waveport2 的 Mode 3 就需要同时先求解 Mode 2 才行。从求解过程来看, waveport2 的 Mode 2 的模式转换分别只有-82.5dB、-67.9 dB 和-72.3 dB, 因此收敛起来较困难。

想要规避这一问题有个巧妙的方法,就是设置 Symmetry H 边界条件。因为 waveport2 的 Mode 1 和 Mode3 都是 H 平面的对称模式,而 Mode 2 是非对称模式。在 HFSS 中,对称 边界条件可将关于边界不对称的模式滤除,从而省略了对 Mode 2 的求解,这就相当于消除 了在求解收敛过程中的"短木桶"。然而,有时候从工程的角度出发,在 H 平面上波导有

Freq		S:WavePort1:1	S:WavePort2:1	S:WavePort2:2	S:WavePort2:3
3 (GHz)	WavePort1:1	-0.314	-11.7	-82.5	-19.5
	WavePort2:1	-11.7	-0.301	-67.9	-17.7
	WavePort2:2	-82.5	-67.9	-16.8	-72.3
	WavePort2:3	-19.5	-17.7	-72.3	-18.6

	U 型拐弯,	因此 Symmetry H 不是经常适用的。
--	--------	------------------------

为了收敛的更快,我们可在如下所示的表面上设置手动网格剖分,从而获得更加高质量的初始网格。

在求解设置部分可参考前述 IRIS 波导滤波器的设置,所不同的是求解频率为 0.4GHz

Solution Setup			
General Options Adva	nced Defaults	1	
Setup Name:	Setup2		
Solution	0.4	GHz 💌	
🔲 Solve Ports Only			
Maximum Number of P	asses:	20	
-Convergence per pass			
Maximum Delta S	5	0.01	
C Use Matrix Conv	vergence	Set Magnitude and Pha	50
	Use Defaults		

接下来,我们对图 3(c)中的基本单元进行建模,我们将它命名为 Coupled-Bucket-resonator.hfss。

÷	vacuum Box1 CreateB		HHH	Å	ATA	4
Prope	rties: Com	bVG3_Coupl	edBucketResonators - HFSSD	esign2	2 - Iodeler	
Comma	nd	N N				
r			(1 11 1		
	м	ame	Yatue	Unit	Evaluated Value	·
	Command		CreateBox			
	Coordinate	System	Global			
	Position		-a/2 ,-spacing/2-radius1 ,Omm		-20mm , -13.5mm , Omm	
	XSize		a		40mm	
	YSize		spacing+radius1+radius2		27mm	
	ZSize		b		40mm	
ľ					1	

Name	Value	Unit	Evaluated Value
Command	CreateCylinder		
Coordinate System	Global		
Center Position	Omm ,-radius1-spacing/2 ,b		0mm , -13.5mm , 40mm
Axis	Z		
Radius	bucket1_inner_radius+bucket1_thickness		9mm
Height	-bucket1_height		-5mm

Prope Comme	Solids pec CreateCylinder Subtract Subtract CreateCylinder CreateCylinder CreateCylinder Ducket_inn CreateCylinder Ducket_inn CreateCylinder Ducket_inn CreateCylinder Subtract CreateCylinder Subtract CreateCylinder Subtract CreateCylinder Subtract CreateCylinder Subtract CreateCylinder Subtract CreateCylinder Subtract CreateCylinder Subtract CreateCylinder Subtract CreateCylinder CreateCylinder Subtract CreateCylinder Subtract CreateCylinder CombUG3_CC	erl ylinder pupledBucketResonators - HFSSI	lesign	- Todeler	
	Name	Value	Unit	Evaluated Value	D
	Name Command	Value CreateCylinder	Unit	Evaluated Value	D
	Name Command Coordinate System	Value CreateCylinder Global	Unit	Evaluated Value	D
	Name Command Coordinate System Center Position	Value CreateCylinder Global Omm ,-radius1-spacing/2 ,b	Unit	Evaluated Value	D
	Name Command Coordinate System Center Position Axis	Value CreateCylinder Global Omm ,-radius1-spacing/2 ,b Z	Unit	Evaluated Value	D

-bucket1_height

Properties: CombWG3_CoupledBucketResonators - HFSSDesign1 - Modeler

Command

Height

Name	Value	lfnit	Evaluated Value	Desc
1.0010				
Command	CreateBox			
Coordinate System	Global			
Position	-a/2 ,-spacing/2-radius1 ,Omm		-20mm , -13.5mm , 0mm	
XSize	a		40mm	
YSize	spacing+radius1+radius2		27mm	
ZSize	Ъ		40mm	

-5mm

	Solids pec bucket1 vest ve	The second secon		
Sol	ids pec bucket1 bucket2 res1 CreateCylinder i-D Intersect res2 res2 res2 res3	edBucketResonators - HFSSDe	esignl	- Iodeler
Г	Name	Value	Uni t	Evaluated Value
-	Command	CreateCylinder		
-	Coordinate System	Global		
	Center Position	Omm ,-radius1-spacing/2 ,Omm		Omm , -13.5mm , Omm
-	Axis	Z		
-	Radius	radius1		6mm
-	Height	height1		36mm
-				/

roperties: CombWG3_CoupledBucketResonators - HFSSDesign1 - Modeler

Name	Value	Uni t	Evaluated Value	De
Command	CreateBox			
Coordinate System	Global			
Position	-a/2 ,-spacing/2-radius1 ,Omm		-20mm , -13.5mm , 0mm	
XSize	a		40mm	
YSize	spacing+radius1+radius2		27mm	
ZSize	Ъ		40mm	

Vacuum Box1 CreateCylinder CreateCylinder Ducket1 airgap CreateCylinder Ducket1 airgap Ducket1 airgap
--

Properties: CombWG3_CompledBucketResonators - HFSSDesign1 - Modeler

Command

Name	Value	Unit	Evaluated Value	
Command	CreateCylinder			
Coordinate System	Global			
Center Position	Omm ,-radius1-spacing/2 ,b		Omm , -13.5mm , 40mm	
Axis	Z			
Radius	bucket1_inner_radius		7mm	
Height	-bucket1_height		-5mm	

Properties: CombWG3_CompledBucketResonators - HFSSDesign1 - Modeler

Name	Value	Unit	Evaluated Value	
Command	CreateCylinder			
Coordinate System	Global			
Center Position	Omm ,-radius1-spacing/2 ,b		Omm , -13.5mm , 40mm	Τ
Axis	Z			Τ
Radius	radius1		6mm	Γ
Height	-bucket1_height		-5mm	Τ

Box8	<pre>vacuum Box1 CreateCylinder Subtract Dresect Dresect</pre>	
------	--	--

Properties: CombWG3_CoupledBucketResonators - HFSSDesign1 - Modeler

v

Name	Value	Unit	Evaluated Value
Command	CreateBox		
Coordinate System	Global		
osition	-a/2 ,-spacing/2-radius1 ,Omm		-20mm , -13.5mm , Omm
Size	a		40mm
Size	spacing+radius1+radius2		27mm
Size	Ъ		40mm

e v	alue <u>O</u> ptimization	C Tunin	g	C Sensitivity	C Statistics		
Г	Name	Value	Unit	Evaluated Value	Description	Read-only	
F	height1	113.44	mm	113.44mm	_	Γ	
F	height2	114.684	mm	114.684mm			
	radius1	4.924	mm	4.924mm			
	radius2	4.924	mm	4.924mm			
	spacing	25	mm	25mm			
	a	30	mm	30mm			
	Ъ	120	mm	120mm			
	bucket1_thickness	2	mm	2mm			
	bucket1_height	15	mm	15mm			
	bucket1_inner_radius	6	mm	6mm			
	bucket2_thickness	bucket1_th		2mm			
	bucket2_height	15	mm	15mm			
	bucket2_inner_radius	bucket1_in		6mm			
<							
	Add Remove					🔽 Show Hidd	.en

如此,图 3 (c)的建模工作就完成了。在端口定义方面,可参照图 3 (b)模型的 waveport2 定义方法。在求解设置方面,图 3(c)也可采用和(b)模型相同的求解设置。

2) 在 HFSS 中进行基本单元的参数化扫描

对于参数化扫描,HFSS 除了支持手工设置参数化扫描点的方式外,还可支持 DOE (Design On Experience)的方式,后者可通过直接在数表中输入扫描点来自动生成相应的

HFSS 参数化扫描设置,比较适合流程化的设计仿真。如前所述,我们可以分别对中间3根金属棒的长度 height2、两侧金属棒的长度 height1、金属棒间的距离 S1 和 S2 以及辐射器与 外侧金属棒间的距离 pole-length 设置一系列参数化扫描。

Set	up Sweep	Analysis		\mathbf{X}
Sw	eep Definiti	ons Table Ge	meral Calculations Options	1
Γ	Sync # Varia	ble	Description	Add
	pole_l	ngth Linear Step f	from 16mm to 17mm, step=0.1mm	F 12
				E alt
Set	up Sweep	Inalysis		
Sw	eep Definiti	ns Table Ge	neral Calculations Options	
	Sync #	Variable	Description	Add
	resona	tor_height	Linear Step from 110mm to 120mm, step=1mm	E alta
				E GIU
Set	tup Sweep	Analysis		
Set Sw	t up Sweep veep Definiti	Analysis ons Table Ge	eneral Calculations Options	
Set Sw	t up Sweep veep Definiti Sync# Va	Analysis ^{DNS} Table Ge able	eneral Calculations Options Description	Add
Set Sw	t up Sweep veep Definiti Sync# Van heigh	Analysis oms Table Ge able 2 Linear Step	eneral Calculations Options Description p from 115mm to 120mm, step=0.5mm	Add
Set Sw	t up Sweep veep Definiti Sync# Va heigh	Analysis Mns Table Ge able 2 Linear Step	eneral Calculations Options Description pfrom 115mm to 120mm, step=0.5mm	Add
Set Sw Set	tup Sweep Veep Definiti Sync# Van height up Sweep	Analysis Mas Table Ge able Linear Ste Analysis	eneral Calculations Options Description pfrom 115mm to 120mm, step=0.5mm	Add Edit
Set Sw Set Sw	tup Sweep veep Definiti Sync # Van heigh up Sweep eep Definiti	Analysis ons Table Ge able 2 Linear Step Analysis ns Table Ges	eneral Calculations Options Description op from 115mm to 120mm, step=0.5mm eneral Calculations Options	Add Edit
Set Sw Set Sw	tup Sweep veep Definiti Sync # Van height up Sweep eep Definiti Sync # Van	Analysis Duns Table Ge able 2 Linear Step Analysis ms Table Ges ble	eneral Calculations Options Description p from 115mm to 120mm, step=0.5mm neral Calculations Options Description	Add
Set Sw Set	tup Sweep veep Definiti Sync # Van heigh up Sweep eep Definiti Sync # Van spacir	Analysis ons Table Ge able Linear Ster Analysis ns Table Ges ble Linear Step g Linear Step	eneral Calculations Options Description p from 115mm to 120mm, step=0.5mm eneral Calculations Options Description from 20mm to 30mm, step=1mm	Add

这些参数化扫描的结果将为优化设计提供基础数据,而优化的过程则是在 Ansoft Designer 的电路设计中完成的。

3) 建立 HFSS 与 Ansoft Designer 间的动态链接

与例(一)中的操作相同,我们可通过在 ADE 的电路原理图设计中插入子电路的形式 将 HFSS 中基本单元连接进来。由于 BucketResonatorFeed.hfss 的 waveport2 以及 Coupled-Bucket-Resonator.hfss 的两个 waveport 都分别包含了 3 个模式,因此当它以元件的 形式导入电路设计时相应的 waveport 也会对应 3 个 Pin 脚。使用者可对 ADE 中的器件符号 进行自由的编辑,因此为了连接电路的方便,我们可对 Pin 脚的位置做调整,并且还可为元件编辑更美观的符号。

除此之外,我们还可以对每个元件设置协同仿真选项,操作如下:

Edit	Component			×
Gene	ral Miscellaneous ' Enable Multiple Repr	Terminals Solver-On esentation	Demand	
los	imulation Models:			
	Cosimulator Name	Cosimulator Type	Define Cosimulator Mo	odel
	Default	Default		
	ss 🦻 🗲	Add		Delete
			确定	取消

Component			🔼 🚺 🖸	(^e ")					
al Miscellaneous Term	inals Solver-On-Dema	and	Hfss Cosim	ulation Definition		×			
Anable Multiple Represen	tation								
mulation Models:			🔽 Use single	e Design across instances					
Cosimulator Name	Cosimulator Twne	Define Cosimula	• Use existi	ing Hfss Design					
Default	Default	Derine cosimur.	C:/Cosin	nulation/CombWG3_CoupledE	BucketRe Hrss Moo	del			
Setup2_Interpolating	HIFSS	Edit	/						
Setup2_simulate	HFSS	Edit	Hrss expo	rt parameters					
Setup1_Interpolate	HFSS	Edit	Paramet	erizable data extent ractor					
Setup1_simulate	HFSS	- Edit	Left:	1.5meters	Top: -U.5meters	;			
			Righ	t: -0 Bineters	Bottom: J1.5meters				
Dynamic MPor	t Import		Air by f	actor (constant):	5 X Total Lave	er Thickness			
			Hfss Pro	ject file:					
nar EM Component nan	ne: HfssData10								
Selection				Script File:					
File: C.V	Cosimulation\CombWG3_	CoupledBucketRe	Script Fil						
Design HF	SSDesign1	•	C:\Cosir	C:\Cosimulation\HfssData1.vbs					
Solution	etup1 : Sweep1	-	Expo	rt definition as Hfss Nportdal	ta,				
Transmis	sion line model	-							
C Interpolat	e existing solutions	Advanced S	ettings						
+ 🖪 🖲 Simulate	missing solutions			OK	Cancel				
Save pro	ject after simulate								
Unload p	roject after use								
Ed	it Component								
G	eneral Miscellan	eous Termina	ls Solver-On-Demand	1					
				'	1				
	✔ Enable Multipl	.e Representat	ion						
	Cosimulation Mode	le.							
	Cosimula		Cosimulator Twos	Define Cosimulato	w Model				
	Defeult	icor induc	Defeult	Delline oosimalate					
	Satur? Tatur	alatina	upec						
	Setup2_interp		uree	Eait					
	Setup2_simula		10.55	Eait					
	Setupl_Interp	olate	MP55	Edit					
	Setup1_simuls	ite	HESS	Edit					
	<								
	Planar EM	▼Ado	1	Der	ete				
				 确定	取消				
					-6113				

在元件的"Sover-On-Demand"项做了如上的设置之后,其属性栏就会出现"cosimulator" 这一项,使用者可以在一系列的协同仿真设置中进行选择,比如,进行优化时,一般会选择 对已有的仿真结果进行插值"interpolating"。

¥a	due C Optimize	tion C Tuning C Sensit	i vi ty	C Statistics		
ਿ	Nane	Value	Unit	Evaluated Value		_
	spacing	feed_spacing		2nn		
Į.,	a.	4		40nn		
	b	b		40nn		
11	antenna_radius	antenna_radius antenna_length		13nn		
1	antenna_length			4nn		
88	resonator_radius	resonator_radius		6en		
43	rezonator_height	res1_height		36nn		
	pole_radius	pole_radius		1.5en		
	pole_length	pole_length		16nn		
11	feed_length	feed_length		15nn		
11	feed_inner_radius	feed_inner_radius		1.5en		
	feed_outer_radius	feed_outer_radius		3.5nn		
12	antenna_elevation	antenna_elevation		15nn		
33	bucket_inner_radius	bucket_inner_radius		Ten		
	bucket_height	bucket_height		See		
	bucket_thickness	bucket_thickness		2nn		
Î	ModelName	FieldSolver				
17	Data	HfssData				
	CosimDefinition	Edit				
<	CoSimulator	Setup1_sweep1_Interpolating				
<	Status	Default Setup2_sweep1_Interpolating Setup2_sweep1_simulate Setup1_sweep1_Interpolating Setup1_sweep1_simulate		ſ	Show Hidden	1000

4) 在 Ansoft Designer 中完成滤波器的优化设计

首先从菜单栏的 Circuit-> Design Properties-> Local variables->Optimization 中选中 需要参与优化的变量: res1-height, res2-height, pole-length, S1, S2。

	Name	Include	Nominal Value	Min	Unit	Max	Unit
bu	cket_thickness		2.9544mm	2	mm	3	mm
a			30mm	20	mm	60	mm
Ъ			120mm	20	mm	60	mm
re	sonator_radius		4.924mm	3	mm	7	mm
an	tenna_radius		12.803mm	12	mm	14	mm
bu	cket_inner_radius		5.909mm	2.9545	mm	8.8635	mm
an	tenna_elevation		90mm	7.5	mm	22.5	mm
fe	ed_spacing		2mm	1	mm	3	mm
an	tenna_length		4mm	2	mm	6	mm
re	s3_height		res2_height		mm		mm
po	le_radius		1.5mm	0.75	mm	2.25	mm
fe	ed_length		15mm	7.5	mm	22.5	mm
fe	ed_inner_radius		1.5mm	0.75	mm	2.25	mm
fe	ed_outer_radius		3.5mm	1.75	mm	5.25	mm
bu	cket_height		15mm	7.5	mm	22.5	mm
re	s1_height	v	113.44mm	110	mm	120	mm
re	s2_height	~	114.684mm	110	mm	120	mm
po	le_length	✓	16.707mm	15	mm	17	mm
S1		~	25.437mm	20	mm	30	mm
S2		✓	28.452mm	20	mm	30	mm

优化设置与例一类似:

etup Optimization 🛛 🔀										
Goals Variables General										
Optimizes Gradient 🔽 🗖 Randomize Seed										
Max. No. of 1000										
Cost										
Solution	Calculation	Calc. Range	Condition	Goal	Weight					
NWA1	RL.	F(Single value at 395MHz)	<=	[-30]	[1]					
NWA1	IL	F(Single value at 385MHz)	<=	[-30]	[1]					
NWA1	IL	F(Single value at 415MHz)	<=	[-30]	[1]					
Add	Delete	dit Calculation	dit Cal. F	lange.] lit	Goal/Weight	ti o				
			[确定	取消					

经初步优化后的滤波器频响特性如下图所示,优化是比较细致的工作,一般要通过几次 优化微调才能达到较好的指标。

5) Ansoft Designer 与 HFSS 的仿真结果对比与讨论

对于这个例子中的滤波器,相对带宽只有不到4%,因此对于仿真精度的要求很高。关于仿真精度的讨论是初次使用协同仿真的设计者十分关注的话题。下面我们对比了在不同的求解精度下(也就是收敛度"convergence")整个滤波器结构在 HFSS 中进行仿真的结果与根据协同仿真在 ADE 中的仿真结果。

当整个滤波器结构在 HFSS 中进行仿真,收敛度达到 3.6%时,消耗的峰值内存将超过 2GB;而协同设计中的单个基本单元在 HFSS 中仿真时,收敛度达到 0.4%,消耗的内存峰 值仅为 300MB 左右。如果我们将频带缩小到 385MHz~415MHz,我们会仔细地观察到上述 两种情况下的仿真频响曲线还是会有不到 500kHz 的频偏。而我们好奇的是,哪个仿真结果 会更准确?

于是,我们继续加密网格,进一步的提高 HFSS 的收敛度(也就是求解精度)。当 HFSS 的收敛度达到 1.6%时,消耗的峰值内存为 3GB,用这时的仿真结果和刚才的协同仿真结果 进行对比,我们不难发现,虚线的 HFSS 频响曲线正在向实线所表示的协同仿真的频响曲线 靠拢,这次的差距只有不到 300kHz。根据我们对仿真工具的理解,我们可以认为协同设计 的仿真结果将更逼近于真实结果。

正如我们再一次证实了的:收敛度是网格剖分算法的基础,如果我们将复杂的结构离散 成若干基本单元,基本单元的仿真收敛度越好,协同仿真的结果就会越精确,对于相对带宽 较小的带通滤波器来说尤其是这样。

从上述两个带通滤波器的例子我们可以看到, Ansoft 协同设计方法不但将滤波器的设计 周期从数周缩短到数日,并且降低了对计算机内存的需求,并且相比起滤波器整体在 HFSS 中仿真来说设计者更容易获得较高的精度。

射频和天线设计培训课程推荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立,致力并专注于微 波、射频、天线设计研发人才的培养;我们于 2006 年整合合并微波 EDA 网(www.mweda.com),现 已发展成为国内最大的微波射频和天线设计人才培养基地,成功推出多套微波射频以及天线设计经典 培训课程和 ADS、HFSS 等专业软件使用培训课程,广受客户好评;并先后与人民邮电出版社、电子 工业出版社合作出版了多本专业图书,帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、 研通高频、埃威航电、国人通信等多家国内知名公司,以及台湾工业技术研究院、永业科技、全一电 子等多家台湾地区企业。

易迪拓培训课程列表: http://www.edatop.com/peixun/rfe/129.html

射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电 路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材; 旨在 引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和 研发设计能力。通过套装的学习,能够让学员完全达到和胜任一个合格 的射频工程师的要求…

课程网址: http://www.edatop.com/peixun/rfe/110.html

ADS 学习培训课程套装

该套装是迄今国内最全面、最权威的 ADS 培训教程,共包含 10 门 ADS 学习培训课程。课程是由具有多年 ADS 使用经验的微波射频与通信系 统设计领域资深专家讲解,并多结合设计实例,由浅入深、详细而又 全面地讲解了 ADS 在微波射频电路设计、通信系统设计和电磁仿真设 计方面的内容。能让您在最短的时间内学会使用 ADS,迅速提升个人技 术能力,把 ADS 真正应用到实际研发工作中去,成为 ADS 设计专家...

课程网址: http://www.edatop.com/peixun/ads/13.html

HFSS 学习培训课程套装

该套课程套装包含了本站全部 HFSS 培训课程,是迄今国内最全面、最 专业的 HFSS 培训教程套装,可以帮助您从零开始,全面深入学习 HFSS 的各项功能和在多个方面的工程应用。购买套装,更可超值赠送 3 个月 免费学习答疑,随时解答您学习过程中遇到的棘手问题,让您的 HFSS 学习更加轻松顺畅…

课程网址: http://www.edatop.com/peixun/hfss/11.html

CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出,是最全面、系统、 专业的 CST 微波工作室培训课程套装,所有课程都由经验丰富的专家授 课,视频教学,可以帮助您从零开始,全面系统地学习 CST 微波工作的 各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装, 还可超值赠送 3 个月免费学习答疑…

课程网址: http://www.edatop.com/peixun/cst/24.html

HFSS 天线设计培训课程套装

套装包含 6 门视频课程和 1 本图书,课程从基础讲起,内容由浅入深, 理论介绍和实际操作讲解相结合,全面系统的讲解了 HFSS 天线设计的 全过程。是国内最全面、最专业的 HFSS 天线设计课程,可以帮助您快 速学习掌握如何使用 HFSS 设计天线,让天线设计不再难…

课程网址: http://www.edatop.com/peixun/hfss/122.html

13.56MHz NFC/RFID 线圈天线设计培训课程套装

套装包含 4 门视频培训课程,培训将 13.56MHz 线圈天线设计原理和仿 真设计实践相结合,全面系统地讲解了 13.56MHz 线圈天线的工作原理、 设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体 操作,同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过 该套课程的学习,可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹 配电路的原理、设计和调试…

详情浏览: http://www.edatop.com/peixun/antenna/116.html

我们的课程优势:

- ※ 成立于 2004 年, 10 多年丰富的行业经验,
- ※ 一直致力并专注于微波射频和天线设计工程师的培养,更了解该行业对人才的要求
- ※ 经验丰富的一线资深工程师讲授,结合实际工程案例,直观、实用、易学

联系我们:

- ※ 易迪拓培训官网: http://www.edatop.com
- ※ 微波 EDA 网: http://www.mweda.com
- ※ 官方淘宝店: http://shop36920890.taobao.com

专注于微波、射频、大线设计人才的培养 **房迪拓培训** 官方网址: http://www.edatop.com

淘宝网店:http://shop36920890.taobao.cor