Wave ports面表示的是电磁波从此面传输进入仿真模型,具体信息如下:
Wave ports represent places in the geometry through which excitation signals enter and leave the structure. They are used when modeling strip lines and other waveguide structures. The setup of wave ports varies slightly depending on whether your solution is modal or terminal.
By default, the interface between all 3D objects and the background is a perfect E boundary through which no energy may enter or exit. Wave ports are typically placed on this interface to provide a window that couples the model device to the external world.
HFSS assumes that each wave port you define is connected to a semi-infinitely long waveguide that has the same cross-section and material properties as the port. When solving for the S-parameters, HFSS assumes that the structure is excited by the natural field patterns (modes) associated with these cross-sections. The 2D field solutions generated for each wave port serve as boundary conditions at those ports for the 3D problem. The final field solution computed must match the 2D field pattern at each port.
HFSS generates a solution by exciting each wave port individually. Each mode incident on a port contains one watt of time-averaged power. Port 1 is excited by a signal of one watt, and the other ports are set to zero watts. After a solution is generated, port 2 is set to one watt, and the other ports to zero watts and so forth.
Within the 3D model, an internal port can be represented by a lumped port. Lumped ports compute S-parameters directly at the port. The S-parameters can be renormalized and the Y-matrix and Z-matrix can be computed. Lumped ports have a user-defined characteristic impedance.
wave port就是波端口的意思,就是给波导设置一个激励端口
通常是E的方向
不会是k的方向
楼主查阅一下help或者HFSS手册,上面讲的还挺清楚的
声明:网友回复良莠不齐,仅供参考。如需更专业、系统的学习HFSS,可以购买本站资深专家讲授的HFSS视频培训课程。